制造不同药物的聚合物颗粒的最常见工具之一是磁力搅拌器,这是一种基于纳米的药物输送系统中广泛使用的工具。通常,在相关文献中报告了搅拌器的每分钟旋转(RPM)或G-Force,而其他参数则引起较少的注意力,必须更好地理解。报告RPM或G-Force可能不足以产生与具有可靠且可重现的纳米粒子和微粒合成方法相同的涡流流强度和单分散性。我们推测磁力搅拌器的长度和直径以及圆柱容器的大小会影响纳米颗粒和微粒的质量。鉴于这些粒子特征在纳米医学领域的重要性,了解这些细节将提高报告方法的可靠性。这些数据目前在大多数相关论文中都缺少,必须报告。我们研究的目的是强调这些低估参数的重要性(磁条的长度,直径和圆柱容器的大小),并使用磁性搅拌器对粒子合成方法的可重复性产生影响。
摘要:纳米颗粒是纳米材料,具有三个外部纳米级尺寸,平均大小范围为1至1000 nm。纳米颗粒由于其可调的物理,化学和生物学特征而在技术进步方面臭名昭著。然而,由于单核吞噬系统的快速检测以及血液和组织清除,功能化的纳米颗粒对生物的施用仍然具有挑战性。该系统的主要指数是巨噬细胞。无论纳米材料组成,巨噬细胞都可以通过吞噬作用检测并纳入异物。因此,最简单的解释是,任何注射的纳米颗粒都可能被巨噬细胞吸收。这部分解释了大多数纳米颗粒在脾,淋巴结和肝脏中的自然积累(单核吞噬系统的主要器官)。因此,最近的研究致力于设计纳米颗粒,以针对患病组织中的特定巨噬细胞靶向。本综述的目的是描述纳米颗粒设计巨噬细胞的当前策略,并调节其与不同疾病有关的免疫功能,并特别强调慢性炎症,组织再生和癌症。
MC-3和SM-102 LNP公式用于通过静脉注射0.3mg/kg的静脉注射液(100%N1-甲基-PSEU修饰,Genscript)向BALB-C小鼠提供BALB-C小鼠。通过全身生物发光成像(左图)测量插曲mRNA的表达。在48小时后(最高中间)收集并成像,以评估不同配方,心脏,肝脏,肺,脾脏,肾脏,肾脏和大脑的生物分布。两种配方在注射后3天评估(右上角)评估,导致体重减轻最小。
尽管患者护理方面取得了很大进展,但各种癌症类型的全球发病率仍在继续上升。开发更安全,更有效的抗癌治疗方法引起了极大的兴趣。近几十年来,纳米技术已成为癌症诊断和治疗的一种有前途且创新的医学方法。但是,作为癌症进展的纳米医学,了解和应对挑战很重要。在此,我们确定了当前对纳米医学在临床结果的有效性的理解中的差距,并为改善纳米技术在医学中的应用提供了前景。我们讨论了不同类型的纳米颗粒用于癌症诊断和治疗的使用,以及使用纳米颗粒对现有抗癌治疗效率的影响,例如化学治疗,抗血管生成,免疫治疗药物和放射治疗。此外,还提供了基于纳米颗粒治疗的临床试验的当前状态。
纳米颗粒是具有独特特性的微小颗粒,分为有机,无机和基于碳的类别。它们已经使用了几个世纪,古老的文明在各种应用中使用它们。纳米颗粒的表面特征和粒径可以被动地和主动地靶向药物。他们提供了许多优势,包括增强对封装化学物质释放动力学的控制,通过细胞屏障改善药物运输以及降低毒性。然而,纳米颗粒由于其尺寸较小和表面积较大而表现出很强的反应性,这会导致生物学上有害的作用。基于碳的纳米颗粒,包括富勒烯,石墨烯,碳纳米管和碳纳米纤维,具有不同的机械,化学和物理特性。银,金和铜纳米颗粒也已被广泛研究其抗菌和抗病毒特性。纳米颗粒的应用是多种多样的,从生物医学和药物到环境和工业用途。总体而言,纳米颗粒有可能彻底改变各个领域,但是必须仔细管理其发展和使用以减轻其潜在风险。
2.1. 无机纳米粒子................. ... ................. ... ................. ... .................................................................................................................................................................................................................................2953 2.5. 纳米晶体....................................................................................................................................................................................................................................................................................... ... . ...树枝状聚合物.................... ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 2953
WITH EPOXY RESIN COMPOSITES Z. HUSSAIN a , S. TAHIR a,b,* , K. MAHMOOD a , A. ALI a , M. I. ARSHAD a , S. IKRAM a , M. AJAZ UN NABI a , A. ASHFAQ a , U. UR REHMAN a , Y. UDDASSIR a a Government College University Faisalabad, 38000, Pakistan b University Of New South Wales, Australia Silver纳米颗粒具有出色的,电和光学特性,使其非常适合光学,生物医学和抗菌剂应用。当前研究的主要目标是改变表面电阻,以增加其吸收。在这项研究工作中,银纳米颗粒是通过共沉淀法制备的。对于此Agno 3和环氧树脂在250 mL去离子水中混合,搅拌半小时。然后,通过滴下滴下降氨溶液NH 4 OH,以将溶液的pH值保持为(10-11)。过滤溶液后,将滤液在150 0 C的温度下干燥2小时C,将其磨碎后,将其在5小时的时间跨度以1000 0 C放入炉中。通过增加0.5g银中环氧树脂(0.25g,0.5g和0.75g)的浓度来制备三个样品。通过使用XRD在27 0角度使用XRD,峰强度增加320(A.U)。峰强度的增加表明,环氧树脂的沉积和质地是在相同的方向上创建的。由FTIR检查的样品具有0.5 g环氧树脂和0.5g Ag,显示出具有C -H弯曲的796.72 cm -1的尖峰。还出现一个宽峰564.88厘米-1,与甲基匹配。引言纳米技术是分子量表的功能系统的工程。另一个样品在FTIR检查的0.5 g白银中具有0.75g环氧树脂,在875.79cm -1时显示出尖峰,显示C = C键。在1424.36厘米-1、564.88cm -1和464.80cm -1的1424.36cm -1和464.80cm -1获得了三个宽峰。用银样品的紫外可见光谱显示出在381.98 nm处获得𝜆max,显示了分子的强光子吸收。结论是,银中环氧树脂复合材料是增强银纳米颗粒技术应用的一种有前途的方法。(2020年6月6日收到; 2020年8月31日接受)关键词:硝酸银(AGNO 3),NH 4 OH,环氧树脂,pH,X射线衍射(XRD),傅立叶转化Infra-Red Spectroscoppopy(ft-ir),UV-Vis-Visible Spectroscoppy 1。这涵盖了当前的工作和更高级的概念。现代合成化学已经达到了可以将小分子制成几乎任何结构的地步。这些方法今天用于生产各种有用的化学物质,例如药物或商业聚合物。这种能力提出了将这种控制范围扩展到下一个大量水平的问题,寻求将这些单分子组装到由许多分子组成的超分子组件中,这些分子以明确的方式排列的许多分子。
摘要:继 2020 年首次演示冷却至量子基态的悬浮纳米球(U. Delić 等人,Science,第 367 卷,第 892 页,2020 年)之后,宏观量子传感器似乎即将问世。与其他量子系统相比,纳米球的质量较大,这增强了纳米粒子对引力和惯性力的敏感性。从这个角度来看,我们描述了光学悬浮纳米粒子实验的特点(J. Millen、TS Monteiro、R. Pettit 和 AN Vamivakas,“悬浮粒子的光力学”,Rep. Prog. Phys.,第 83 卷,2020 年,艺术编号 026401)及其在加速度传感方面的拟议用途。悬浮纳米粒子平台的独特之处在于它不仅可以实现量子噪声限制的传导,量子计量学预测其灵敏度将达到 10 − 15 ms − 2 量级(S. Qvarfort、A. Sera fini、PF Barker 和 S. Bose,“通过非线性光力学进行重力测量”,Nat. Commun.,第 9 卷,2018 年,文章编号 3690),而且可以实现长寿命量子空间叠加以增强重力测量。这遵循了开发利用叠加或纠缠的传感器(如冷原子干涉仪)的全球趋势。得益于这些现有量子技术的重大商业开发,我们讨论了将悬浮纳米粒子研究转化为应用的可行性。
乳腺癌是最常见的妇科恶性肿瘤之一,占所有恶性肿瘤的7-10%。1这也是一种严重的疾病,会影响妇女的身心健康以及威胁她们的生命。2 - 4化学疗法是乳腺癌的重要治疗方法,除手术和放射疗法外。盐酸二氨基霉素(DOX)被视为第一线抗肿瘤药物,5对乳腺癌表现出极好的治疗作用。然而,由于其药代动力学不良和整个身体中的非规定C分布以及全身给药以及对肿瘤的低调,DOX会导致长期给药的严重毒性影响。6,7利用目标药物输送系统策略是一种有效的方法,可以通过改善药物的渗透
本期特刊专门介绍金纳米粒子 (Au NPs);这是一种在(电)催化、电子、传感、纳米生物技术、诊断和治疗等领域具有广泛应用的先进材料。为了满足特定应用的要求,可以轻松合成具有各种尺寸、形状和表面功能的 Au NPs。由于可见光范围内的表面等离子体共振 (SPR) 效应,它们具有独特的尺寸和形状相关光学特性,例如电磁波近红外 (IR) 光谱中的光吸收。这些特性使它们适用于基于 SPR 的生物传感器设备、表面增强拉曼散射研究 (SERS) 和生物医学应用,例如光动力疗法,其中光吸收会导致局部散热,可用于杀死癌细胞。欢迎提交全文、通讯和评论。
