2020年7月29日收到; 2021年1月11日接受;于2021年2月4日出版:作者隶属关系:1个非编码RNA技术与健康中心,哥本哈根大学兽医和动物科学系,1871年,丹麦Frederiksberg,哥本哈根大学; 2荷兰荷兰癌症研究所的致癌基因组学司,荷兰阿姆斯特丹1066; 3哥本哈根大学生物学系计算和RNA生物学部分,丹麦哥本哈根1165;丹麦的Bagsværd4 Novozymes。*通信:Jan Gorodkin,Gorodkin@rth。DK关键字:B。uttilis;基因组注释;非编码和结构化RNA;操纵子。缩写:Asrna,反义RNA; CD,编码序列;去,基因本体论; GRNA,导向RNA; Ji,Jaccard索引; ncRNA,非编码RNA; SRNA,小RNA; TMRNA,转移Messenger RNA; TSS,转录开始站点; TTS,转录终止位点; TU,转录单元; UTR,未翻译区域。†目前地址:英国索尔福德大学科学,工程与环境学院。数据语句:文章或通过补充数据文件中提供了所有支持数据,代码和协议。本文的在线版本可以使用四个补充表和九个补充数据。000524©2021作者
摘要是一种高度专业的细胞,精子具有不同的表观遗传机制,主要的细胞是DNA甲基化,组蛋白代码,NCRNA(非编码RNA)和通过精神经济的存在对染色质的高凝结。这些机制相互相互作用,有助于形成精子表观基因瘤,后者塑造了精子分子载荷,这反过来又会影响胚胎和后代发育的特征。因此,目前共识是,精子的作用在受精时超过了卵母细胞的质量DNA。来自包括我们的各个群体的最新研究表明,除了有助于优质DNA外,精子还在受精时向卵母细胞提供了分子,从而影响胚胎的发展。最近,这些精子(英语:精子)分子也与后代的代谢和认知变化有关。尽管它仍然了解这些机制即使在受精后不久发生的细胞重编程周期也可能持续存在,但很明显它们可以影响后代的特征。在这篇综述中,我们将解决精子表观瘤的调节及其对胚胎发育的影响。关键字:细胞外囊泡,胚胎基因组激活,微龙,表观遗传学,牛。
摘要:随着对各种疾病相关非编码RNA的了解不断加深,ncRNA正成为新的药物和药物靶点。基于不同类型的非编码RNA的核酸药物已被设计和测试。化学修饰已被应用于非编码RNA,如siRNA或miRNA,以增加其对降解的抵抗力,同时尽量减少对其生物功能的影响。化学生物学方法也已被开发来调节各种疾病发生中相关的非编码RNA。设计核糖核酸酶靶向嵌合体以降解内源性非编码RNA等新策略正在成为调节基因表达的有前途的方法,可作为下一代药物。本综述总结了基于非编码RNA的治疗诊断学的现状、开发核酸药物的非编码RNA的主要化学修饰、RNA与不同功能生物分子的结合以及设计和筛选用于调节内源性非编码RNA表达或活性的潜在分子以进行药物开发。最后,讨论了改善非编码RNA传递的策略。
微小RNA(miRNA)和长链非编码RNA(lncRNA)是与肿瘤侵袭性和癌症转移相关的许多信号通路的组成部分。一些lncRNA被归类为竞争性内源性RNA(ceRNA),它们与特定的miRNA结合,以阻止与靶向mRNA的相互作用。研究表明,肝细胞生长因子/间充质上皮转化因子(HGF/c-Met)通路参与细胞生长、血管生成和胚胎发生等生理和病理过程。c-Met的过度表达可导致下游信号的持续激活,从而导致致癌、转移和对靶向治疗的耐药性。在本综述中,我们利用临床和组织染色质免疫沉淀 (ChIP) 分析数据评估了抗癌和致癌非编码 RNA (ncRNA) 对 c-Met 的影响,以及癌症中 lncRNA、miRNA 和 c-Met 之间的相互作用。我们总结了当前对 lncRNA/miR-34a/c-Met 轴在不同肿瘤类型中的机制和影响的认识,并评估了针对 c-Met 的 lncRNA 和/或 miRNA 对药物耐药性的潜在治疗价值。此外,我们讨论了 lncRNA 和 miRNA 在 c-Met 相关致癌作用中的作用以及潜在的治疗策略。
摘要。可塑性,癌细胞在没有基因组改变的分化状态之间过渡的能力已被认为是肿瘤内异质性的主要来源。它在癌症转移和耐药性中具有至关重要的作用。因此,靶向可塑性具有巨大的希望。然而,癌细胞中可塑性的分子机制仍然鲜为人知。几项研究发现,mRNA充当连接DNA和蛋白质遗传信息的桥梁,在将基因型转化为表型中具有重要作用。本综述概述了通过变化和编辑mRNA进行的调节癌细胞可塑性的调节。讨论了mRNA在癌细胞可塑性中的转录调节的作用,包括结合转录因子,DNA甲基化,组蛋白修饰和增强子。此外,辩论了mRNA编辑在癌细胞可塑性中的作用,包括mRNA剪接和mRNA修饰。此外,阐述了非编码(NC)RNA在癌症可塑性中的作用,包括microRNA,长基因间NCRNA和圆形RNA。最后,讨论了靶向癌细胞可塑性克服转移和癌症治疗性的不同策略。
最初被边缘化为从DNA到蛋白质的信息流中的中间体,RNA已成为现代生物学的明星,拥有精确治疗,基因工程,进化起源以及我们对基本细胞过程的理解。但是,RNA既多产,又是一家信息商店,一种使者和催化剂,涵盖了许多含有许多功能和结构性类别的催化剂。解密RNA的语言不仅对于对其生物学功能的机械理解,而且对于加速药物设计而言很重要。朝向这个目标,我们引入了AIDO.RNA,这是AI驱动数字有机体中RNA的预训练的模块[1]。aido.RNA包含16亿个参数,在单核苷酸分辨率下对4200万个非编码RNA(NCRNA)序列进行了培训,并且在一系列全面的任务上,在包括结构预测,遗传调节,跨种类的分子功能和RNA序列设计上实现了最先进的性能。aido.RNA在域适应后,学会了建模蛋白质翻译的基本部分,即蛋白质语言模型近年来受到广泛关注的蛋白质模型。更广泛地,aido.RNA暗示了生物序列建模的一般性以及利用中央教条来证明许多生物分子表示的能力。模型和代码可通过https://github.com/genbio-ai/aido和拥抱脸的模型Generator获得。
170 171图1。临时性靶标基因组靶标基因组进行连续编辑a。 ICOMBIBRON示意图:A 172修饰的反龙生成ssDNA,该ssDNA包含供体序列,其与173个噬菌体基因组具有同源性的编辑序列,该基因组在SSB和SSAP复制过程中整合到噬菌体基因组中。RERON 174盒子是从包含逆转录酶(RT)和NCRNA的操纵子表达的。NCRNA的反向175个抄录区域以紫色显示为浅蓝色的供体序列,176编辑位点以橙色显示。第二个操纵子表示Csprect和mutl E32K。b。左:跨lambda噬菌体编辑的噬菌体177基因组(作为所有基因组的百分比)。用正向RT-DNA进行编辑以蓝色显示,紫色为178。在每个点的空心圆中显示三个单独的重复。右:使用179的编辑位点14,126(±SD)的重稳定物明显大于DRT对照的编辑(t检验,180 P = 0.0018)。c。左:在噬菌体T7上编辑的噬菌体基因组在每个位置进行了三个重复,在b中显示181。右:用现场22,872(±SD)的重稳定子进行编辑明显大于使用182 DRT对照的编辑(t检验,p = 0.0094)。d。左:在噬菌体T5上编辑的噬菌体基因组在每个183个位置上进行了三个重复,如b所示。右:用现场27,182(±SD)的重稳定子进行编辑显着高于使用DRT对照的编辑(t检验,p <0.0001)。e。位点30,840(f)(±SD)的Lambda的编辑与185张(±SD)与大肠杆菌SSB或T7 SSB的补充表达进行了比较。SSB 186表达(单向方差分析,p <0.0001,n = 3),大肠杆菌(p = 0.005)和T7(p = <0.0001)187均显着不同,与NO NO SSB条件显着不同(Dunnett's,校正)。f。与大肠杆菌SSB或T7 SSB的补充表达相比,位点11,160(R)188(±SD)的T7编辑。SSB表达(单向方差分析,p <0.0001,n = 3)具有显着的效应,大肠杆菌(P = 0.0002)和T7 190(p = 0.0127)均显着不同,与NO SSB条件显着不同(Dunnett's,更正)。g。示意图说明191编辑噬菌体的积累,并进行了多轮编辑。h。编辑的Lambda Phage的比例192
对治疗的抵抗力。例如,LNCRNA和miRNA与LNCRNA相互作用,LNCRNA充当竞争性内膜RNA(CERNAS),以改变miRNA活性并改变癌细胞中的mRNA表达。[5] lncrNA在肿瘤发生,预后结局,口腔癌的前体和相关信号通路中的作用,特别是引起了很多关注。这些分子在一系列生理和病理过程中具有重要功能,包括癌症和基因调节网络的复杂性。与口腔癌相关的识别和特征 - izing lncRNA为他们作为早期检测的生物标志物的潜力和开发成功疗法的靶标提供了重要的见解,同时还解决了使用NCRNA来改善患者结局的挑战。[6,7]三个肿瘤抑制lncRNA(MEG3,POU3F3和PANDAR),两个转移性的LNCRNA(Linc00312和Malat1)和六个LNCRNA(CD-KN2B-AS1,H19,H19,Hotair,Hotair,hotair,ap5m1,linc-linc-rinc-rer and cinterfif)[8] microRNA(miRNA)已成为口腔癌发病机理的关键参与者。microRNA是微小的非编码RNA分子,在转录后控制基因表达,影响各种生物学和病理过程,包括癌症形成和进展。他们参与口腔癌强调了它们作为早期检测生物标志物和新技术的靶标的潜力。研究
头颈癌 (HNC) 表现出显著的异质性,包括不同的细胞来源、解剖位置和病因因素,再加上普遍的晚期诊断,给临床管理带来了重大挑战。基因组测序工作揭示了调节细胞增殖和存活的关键信号通路的广泛改变。针对这些失调通路的疗法设计计划正在进行中,几种候选分子正在进入临床评估阶段,包括 FDA 批准的用于 K-RAS 野生型、EGFR 突变型 HNSCC 治疗的 EGFR 靶向单克隆抗体西妥昔单抗等药物。非编码 RNA (ncRNA) 由于其在生物体液中的稳定性增强以及在 HNC 环境中的细胞内和细胞间信号传导中的重要作用,现在被认为是疾病管理的有力生物标志物,可催化进一步完善的诊断和治疗策略,更接近个性化医疗的要求。预计,对 HNC 特有的基因组和免疫学特征的深入了解将有助于更严格地评估靶向疗法的利弊,优化其临床部署,并促进治疗方法的创新进步。本综述介绍了驱动头颈部恶性肿瘤发生发展的 HNC 分子机制和突变谱的最新情况,并探讨了它们对推进诊断方法和精准治疗的意义。
表观遗传学是指与基因表达和分化的调节以及基因活性或细胞表型的遗传变化相关的表观遗传修饰,而不会改变DNA序列(Hernández-Romero等,2019)。当前的研究表明,包括DNA甲基化和羟基甲基化,组蛋白的修饰以及非编码RNA(NCRNA)的调节与AD紧密相关,并有助于AD治疗(Wang et al。,2020; Wu和Kuo,2020; Xiao et al。 Perkovic等,2021)。目前,AD表观遗传学的研究热点仍然是DNA甲基化,miRNA的调节,组蛋白乙酰化等。研究表明,许多microRNA(miRNA)可以用作早期诊断AD的标记,并且表观遗传机制调节初步AD中的基因表达(Gao等,2022)。因此,研究AD和表观遗传学之间的相互作用在治疗和预防AD中起着重要作用。但是,AD的发病机理很复杂,现有药物具有极端的副作用,因此AD的治疗没有很大进展。因此,进一步阐明AD的表观遗传机制,找到更新,更可靠的生物标志物,提出新的治疗策略并制定新的研究方向仍然非常重要。同时,该领域没有文献计量分析。因此,为了促进研究人员更好地了解表观遗传学和AD联系的当前状态和发展趋势,我们使用文献计量方法来定量分析和可视化该领域的文献。