微纳器件与技术研究是信息科学与生命科学交叉领域的重要前沿,在神经科学和医学应用领域具有重要的战略意义和良好的应用前景(Liu et al.,2020)。随着微纳加工技术的快速进步,创新的智能化、微型化、集成化器件不断涌现,在检测和调控方面具有独特的优势。值得注意的是,将微纳器件与神经科学和临床医学相结合,可以解决科学前沿问题并培育新的研究热点。癫痫是一种主要的神经系统疾病,影响着全球超过六千万人,严重影响他们的健康和生活质量(Bernhardt et al.,2019)。研究相关神经回路内神经活动的变化对阐明癫痫的发病机制和治疗方法至关重要。可植入微电极阵列能够高质量地记录信号和解码神经信息,在脑机接口方面具有巨大的应用潜力(Wang 等人,2024 年)。Han 等人设计并制造了一种可植入微电极阵列,专门用于癫痫大鼠基底神经节纹状体区域的电生理信号检测和分析。对癫痫发作期间纹状体的电生理数据的分析为了解颞叶癫痫发作初期和潜伏期期间纹状体神经活动的动态过程提供了宝贵的见解。这一理解有助于揭示癫痫的神经机制,同时促进相关治疗方法的进步。疼痛是一种情绪和不愉快的感官体验,会对生活和工作的各个方面产生重大的生理和心理影响。纳米技术的最新进展为利用各种纳米材料和靶向表面的创新止痛策略铺平了道路
最佳运输,也称为运输理论或Wasserstein指标,是一个数学框架,它解决了找到最有效的方法将质量或资源从一个分布转移到另一种分布的最有效方法的问题,同时最大程度地减少了一定的成本函数[1,2,3]。最初在18世纪作为物流和经济学工具开发,最佳运输在现代数学和各种科学学科(包括计算机科学和机器学习)上引起了极大的关注。在其核心方面,最佳运输旨在通过找到将一个分布的质量重新分配以匹配另一个位置的成本,从而量化两个概率分布之间的相似性。这个优雅而多才多艺的概念在不同领域中发现了从图像处理和数据分析到经济学[11]和神经科学的应用,使其成为具有广泛含义的强大而统一的数学工具[12]。
神经程序是高度准确且结构化的策略,可以通过控制计算机制的行为来执行算法 - MIC任务。尽管有可能增加人工剂的行为的解释性和组成性,但仍很难从代表计算机程序的演示神经网络中学习。与其他模仿学习域不同的设定算法的主要挑战是需要高精度,数据的特定结构的参与以及极为有限的观察力。为了应对这些挑战,我们建议将程序建模为参数化的层次结构程序(PHP)。php是一系列条件操作,使用程序计数器以及观察结果,在采取基本操作,将另一个PHP作为子处理和返回呼叫者之间进行选择。我们开发了一种从一组主管演示中培训PHP的算法,其中只有一些用内部呼叫结构注释,并将其应用于对多级PHP的有效水平培训。我们以两个基准(纳米司法机构和长局添加)的形式显示,PHP可以从较小量的注释和未经通知的示范中更准确地学习神经程序。
众所周知,大脑中的可塑性电路通过突触整合和突触强度局部调节机制受到突触权重分布的影响。然而,迄今为止设计的大多数人工神经网络训练算法都忽略了刺激依赖性可塑性与局部学习信号之间的复杂相互作用。在这里,我们提出了一种新型的生物启发式人工神经网络和脉冲神经网络优化器,它结合了皮质树突中观察到的突触可塑性的关键原理:GRAPES(调整误差信号传播的组责任)。GRAPES 在网络的每个节点上实施依赖于权重分布的误差信号调制。我们表明,这种生物启发式机制可以显著提高具有前馈、卷积和循环架构的人工神经网络和脉冲神经网络的性能,它可以减轻灾难性遗忘,并且最适合专用硬件实现。总的来说,我们的工作表明,将神经生理学见解与机器智能相结合是提高神经网络性能的关键。
卷积神经网络(CNN)在培训数据集代表预期在测试时遇到的变化时,可以很好地解决监督学习问题。在医学图像细分中,当培训和测试图像之间的获取细节(例如扫描仪模型或协议)之间存在不匹配和测试图像之间的不匹配时,就会违反此前提。在这种情况下,CNNS的显着性能降解在文献中有很好的记录。为了解决此问题,我们将分割CNN设计为两个子网络的串联:一个相对较浅的图像差异CNN,然后是将归一化图像分离的深CNN。我们使用培训数据集训练这两个子网络,这些数据集由特定扫描仪和协议设置的带注释的图像组成。现在,在测试时,我们适应了每个测试图像的图像归一化子网络,并在预测的分割标签上具有隐式先验。我们采用了经过独立训练的Denoising自动编码器(DAE),以对合理的解剖分段标签进行模型。我们验证了三个解剖学的多中心磁共振成像数据集的拟议思想:大脑,心脏和前列腺。拟议的测试时间适应不断提供绩效的改进,证明了方法的前景和普遍性。对深CNN的体系结构不可知,第二个子网络可以使用任何分割网络使用,以提高成像扫描仪和协议的变化的鲁棒性。我们的代码可在以下网址提供:https://github.com/neerakara/test- time- aptaptable-neural-near-netural-netural-networks- for- domain-概括。
由 Aaron Beck 提出的抑郁症认知理论得到广泛认可,该理论关注的是信息处理的偏见,强调情感和概念信息的消极方面。当前,人们试图发现这种认知和情感偏见的神经机制,并成功地确定了与情绪、注意力、沉思和抑制控制等几种偏见功能相关的各个大脑区域。然而,抑郁症患者如何发展出这种选择性消极处理的神经生物学机制仍存在疑问。本文介绍了一个以额叶边缘回路为中心的神经学框架,具体分析和综合了杏仁核、海马和内侧前额叶皮质内的活动和功能连接。首先,建立了正反馈回路如何在自动水平上导致抑郁症患者杏仁核持续过度活跃的可能解释。在此基础上,提出了两个假设:假设 1 围绕双向杏仁核海马投射,促进负面情绪和记忆的放大,同时阻碍海马吸引子网络中对立信息的检索。假设 2 强调腹内侧前额叶皮层通过与杏仁核和海马一起概括概念和情感信息,参与建立负面认知框架。本研究的主要目的是改进和补充现有的抑郁症病理模型,推动情感障碍神经科学当前理解的前沿,并最终有助于成功康复令人衰弱的情感障碍。
抽象注意力缺陷多动症(ADHD)是一种神经发育多基因疾病,影响了世界各地5%以上的儿童和青少年。遗传和环境因素在ADHD病因中起着重要作用,这导致了整个人群中广泛的临床结果和生物学表型。与同龄人的对照相比,患者通常发现了4年滞后的大脑成熟延迟。细胞生长率的可能差异可能反映了多动症患者的临床观察结果。但是,仍未阐明细胞机制。为了检验这一假设,我们分析了诱导多能干细胞(IPSC)和神经干细胞(NSC)的增殖,这些细胞(NSC)源自男性儿童和诊断为ADHD的男孩和青少年(使用多基因风险评分评估),以及其相应的对照组。在当前的试点研究中,值得注意的是,ADHD组的NSC繁殖小于对照,而在IPSC发育阶段没有发现差异。我们来自两种不同的增殖方法的结果表明,患者发现的功能和结构延迟可能与这些体外表型差异有关,但从明显的神经发育阶段开始。这些发现是多动症疾病建模领域的第一个发现,对于更好地了解该疾病的病理生理可能至关重要。
抽象的生物电子医学通过感测,处理和调节人体神经系统中产生的电子信号(被标记为“神经信号”)来治疗慢性疾病。虽然电子电路已经在该域中使用了几年,但微电子技术的进展现在允许越来越准确且有针对性的解决方案以获得治疗益处。例如,现在可以在特定神经纤维中调节信号,从而靶向特定疾病。但是,要完全利用这种方法,重要的是要了解神经信号的哪些方面很重要,刺激的效果是什么以及哪些电路设计可以最好地实现所需的结果。神经形态电子电路代表了实现这一目标的一种有希望的设计风格:它们的超低功率特征和生物学上可行的时间常数使它们成为建立最佳接口到真正神经加工系统的理想候选者,从而实现实时闭环与生物组织的闭环相互作用。在本文中,我们强调了神经形态回路的主要特征,这些电路非常适合与神经系统接口,并展示它们如何用于构建闭环杂种人工和生物学神经加工系统。我们介绍了可以实施神经计算基础的示例,以对这些闭环系统中感应的信号进行计算,并讨论使用其输出进行神经刺激的方法。我们描述了遵循这种方法的应用程序的示例,突出了需要解决的开放挑战,并提出了克服当前局限性所需的措施。
人们对由相对少量相互作用的神经元组成的各种集合和大型神经形态系统进行了研究 [1±6]。在《Physics Uspekhi》中,许多综述介绍了使用非线性物理方法研究大脑和神经集合中的动态过程的相关主题 [7±18]。最近,对工作大脑的认知和功能特性进行建模已经成为神经动力学的前沿 [19±21]。尤其是,人们对这一主题越来越感兴趣,这与创建能够重现自然智能关键特性的人工智能系统有关 [22, 23]。为了解决这类问题,有必要建立新的动态模型,这些模型首先可以重现复杂的层次组织,其次可以重现神经元结构的可塑性,因为它们的组成以及结构之间和结构内的连接会根据信息输入的存在与否而变化。迄今为止,已经开发出两种动态建模方法 [24, 25]。其中一种方法是所谓的自上而下的方法,模型采用大脑活动模式——模拟大脑高级过程的积分变量 [20]。另一种方法自下而上,对于可以重现大脑高级功能的神经结构模型,首先,基于对神经元和结构之间连接的真实描述,建立单个神经元的模型 [25, 26]。显然,这两种方法的生物学相关模型都应该基于实验数据。在神经生理学家对大脑进行的实验研究中,神经元的活动是在受试者休息时或受试者执行某项任务时记录的。基于实验数据的模型可以通过两种方式开发。第一种是数据驱动建模,即重建一个动态系统,该系统产生的时间序列在数量上接近实验记录的时间序列。第二种方式是基于所考虑的行为问题建模,即
增材制造工艺在工业领域越来越重要。特别是直接金属沉积 (DMD) 是一种很有前途的制造技术,因为它可以实现广泛的应用,例如从头开始制造零件、在传统加工的原始零件上添加材料,甚至高效修复高价值零件 [1]。除了许多优点外,该工艺的可控性仍然很困难,导致内部缺陷、几何偏差或微观结构不均匀。相变、粉末-气体动力学和参数不确定性等多种物理现象会影响工艺行为并使工艺处理复杂化。因此,需要进行大量的实验活动来确定具有可接受几何和材料性能的工艺参数
