摘要最近的工作还暗示了灵长类动物的基础神经节在视觉感知和注意力中,除了它们在运动控制中的传统作用。基底神经节,尤其是纹状体的尾状核“头”(CDH),从上凸胶(SC)接收间接的解剖连接,这是一种中脑结构,已知在视觉注意力控制中起着至关重要的作用。为了测试这些皮层结构之间可能的功能关系,我们记录了在空间注意任务中单侧SC失活之前和期间猕猴的CDH神经元活性。sc的失活显着改变了CDH神经元的注意力相关调节,并严重损害了基于CDH活性的任务类别的分类。仅在大脑的同一侧与记录的CDH神经元(不相反)失活具有这些作用。 这些结果证明了SC活性与基础神经节中与注意力相关的视觉处理之间的新型相互作用。仅在大脑的同一侧与记录的CDH神经元(不相反)失活具有这些作用。这些结果证明了SC活性与基础神经节中与注意力相关的视觉处理之间的新型相互作用。
帕金森氏病是由黑质Nigra Pars Compacta的多巴胺能神经元的选择性脆弱性和细胞丧失引起的,因此,纹状体多巴胺消耗。在帕金森疾病疗法中,多巴胺的损失是由L-DOPA的给药来抵消的,L-DOPA最初在改善运动节目Symp TOMS方面有效,但随着时间的流逝,L-DOPA诱发的疾病诱发了不可控制的疾病运动的负担。迄今为止,没有有效的运动障碍治疗。多巴胺能和5-羟色胺能系统与内在联系在一起,近年来,在L-多巴巴诱导的发育不良中,已经确立了突触前5-HT1A/B受体的作用。我们假设后突触后的5-羟色胺受体可能发挥作用,并涉及5-HT4受体对运动症状和L-DOPA诱导的运动障碍的调节对帕金森氏病的单侧6-OHDA小鼠模型中的l-dopa诱导的运动障碍。给药67333卢比,一种5-HT4受体部分激动剂,可降低L-DOPA诱导的运动障碍,而不会改变L-Dopa的促动力效应。在背外侧纹状体中,我们发现5-HT4受体主要表达在含D2R的培养基神经元中,并且其表达通过多巴胺消耗和L-DOPA治疗改变。我们进一步表明,5-HT4受体激动剂不仅降低了L-DOPA诱导的运动障碍,而且还可以增强纹状体合理培养基中棘神经元中CAMP-PKA途径的激活。综上所述,我们的发现表明,后突触后5-羟色胺受体5-HT4的激动剂可能是减少L-DOPA诱导的运动障碍的一种新型治疗方法。
标记是有机金属化学,化学催化,材料科学,有机电子,光伏和纳米技术领域的研究人员。他还是西北麦考密克工程学院的材料科学和工程学教授,也是化学与生物工程学教授,也是应用物理学教授。他的共同对应作家安东尼奥·弗切蒂(Antonio Facchetti)是佐治亚理工学院材料科学与工程学院的教授,也是西北地区的化学兼职教授。
自闭症谱系障碍 (ASD) 是由神经发育紊乱/改变导致的持续性疾病。ASD 的多因素病因及其众多并发症增加了确定其根本原因的难度,从而阻碍了有效疗法的开发。越来越多的动物和人类研究证据表明,表达小白蛋白 (PV) 的抑制性中间神经元的功能发生了改变,这是某些形式的 ASD 的共同且可能统一的途径。表达 PV 的中间神经元(简称:PVALB 神经元)与皮层网络活动的调节密切相关。它们特定的连接模式,即它们优先针对锥体细胞的周围区域和轴突起始段,以及它们的相互连接,使 PVALB 神经元能够发挥精细控制,例如,尖峰时间,从而产生和调节伽马范围内的节律,这对感官知觉和注意力很重要。诱导性多能干细胞 (iPSC) 和基因组编辑技术 (CRISPR/Cas9) 等新方法已被证明是了解神经发育和/或神经退行性疾病和神经精神疾病机制的宝贵工具。这些技术进步使得能够从 iPSC 生成 PVALB 神经元。标记这些神经元将允许追踪它们在发育过程中的命运,从前体细胞到分化(和功能性)的 PVALB 神经元。此外,它还可以使用来自健康供体或已知 ASD 风险基因突变的 ASD 患者的 iPSC 来更好地了解 PVALB 神经元的功能。在这篇概念论文中,简要讨论了希望能够更好地理解 PVALB 神经元功能的策略。我们设想,这种基于 iPSC 的方法与新兴(遗传)技术相结合,可以提供机会详细研究 PVALB 神经元和 PV 在“离体神经发育”过程中的作用。
1949 年,心理学家唐纳德·赫布提出了他令人信服的“组装理论”,解释了大脑如何实现这一壮举。该理论可以用一句口头禅来概括:“一起激发的神经元会连接在一起”。该理论认为,对相同刺激作出反应的神经元会优先连接在一起,形成“神经元集合”。这些关联通过突触介导,突触是神经元之间进行交流的微小连接,它们会随着经验而改变,从而在学习和记忆中发挥关键作用。根据赫布理论,激活一些选定的神经元就足以触发整个神经元集合,从而为记忆回忆提供了一个推定的解释。然而,由于连接在一起的神经元会更多地一起激发,因此赫布集合在计算机模拟中经常会因活动爆发而失败,而在神经生物学中很少观察到这种不稳定性。这种差异提出了一个问题:如何将赫布理论与解剖学上合理的电路机制相协调,以提供快速的记忆回忆。
图1。S-LNV端子的分割和3D模型。A,实验协议的示意图。在PDF阳性神经元中表达的RFP RFP使S-LNV终端的荧光鉴定以进行进一步处理。 mito :: apex2和dab被用来染色SBEM的LNV的线粒体。 b,标记的线粒体(白色箭头)用于识别S-LNVS末端。 c,手动分割后S-LNV端子的3D模型在每个时间点显示它们在一起(左)或单独(右)。 d,来自ZT2、14和22卷的代表性神经突出了定义为主要(洋红色),次级(绿色)或第三纪(紫色)神经突和bouton(黄色)的段。 主要神经突定义为从迷人的轴突束延伸的最长投影,次生神经突是由主要的神经突导致的。。RFP使S-LNV终端的荧光鉴定以进行进一步处理。mito :: apex2和dab被用来染色SBEM的LNV的线粒体。b,标记的线粒体(白色箭头)用于识别S-LNVS末端。c,手动分割后S-LNV端子的3D模型在每个时间点显示它们在一起(左)或单独(右)。d,来自ZT2、14和22卷的代表性神经突出了定义为主要(洋红色),次级(绿色)或第三纪(紫色)神经突和bouton(黄色)的段。主要神经突定义为从迷人的轴突束延伸的最长投影,次生神经突是由主要的神经突导致的。包括末端静脉曲张在内的短突出被标记为胸子。在任何给定时间点都没有观察到单个神经突之间的显着差异。e,每个顺序的神经突的总数在顶部指示。该图根据神经突长度根据其顺序(如D中定义)表示定量。f,每个时间点的终端/神经元的体积。在所有图中,误差线指示平均值(SEM)的标准误差。星号表示统计学上的显着差异: * p <0.05,** p <0.01,*** p <0.001。未显示非显着差异。可以在补充表3中找到细节。
摘要 - 我们描述了一种计算体系结构,能够使用配备有M2处理器的普通Apple MacBook Air模拟数十亿个尖峰神经元的网络,24 GB的芯片统一内存和4TB固态磁盘。我们使用基于事件的传播方法,该方法在每个处理周期中处理系统中M神经元的N尖峰数据包。每个神经元具有C二进制输入连接,其中C可以为128或更多。在传播阶段,我们将激活的N神经元的所有靶标的激活值增加。在第二步中,我们使用激活值的直方图来确定即时的触发阈值,并选择将在下一个数据包中发射的N神经元。我们注意到,这种主动选择过程可能与大脑中的振荡活动有关,这可能具有固定在每个周期上发射的神经元百分比的功能。至关重要的是,绝对没有对体系结构的限制,因为每个神经元都可以直接与其他神经元建立联系,从而使我们可以具有前馈和反复的连接。具有M = 2 32个神经元的,这允许2 64个可能的连接,尽管实际连接性极为稀疏。 即使使用现成的硬件,模拟器也可以连续传播包数据包,每秒数千次连接数十次。 值得注意的是,所有这些都可以使用仅37瓦的能源预算,接近人脑所需的能量。 索引术语 - 启用神经网络,大脑尺度模拟,二进制重量,稀疏网络,GPU加速度,Apple M2芯片,生物成分网络,这允许2 64个可能的连接,尽管实际连接性极为稀疏。即使使用现成的硬件,模拟器也可以连续传播包数据包,每秒数千次连接数十次。值得注意的是,所有这些都可以使用仅37瓦的能源预算,接近人脑所需的能量。索引术语 - 启用神经网络,大脑尺度模拟,二进制重量,稀疏网络,GPU加速度,Apple M2芯片,生物成分网络这项工作表明使用当前的硬件可以进行大脑尺度模拟,但这需要重新思考如何实施模拟。
Aditi Verma,Reddy Peera Kommaddi,Barathan Gnanabharathi,Etienne Hirsch,Vijayalakshmi Ravindranath。在帕金森氏病中,对多巴胺能神经元的发育和分化至关重要的基因被下调。神经传播杂志,2023,130(4),pp.495-512。10.1007/S00702-023-02604-X。Inserm-04002894
。CC-BY 4.0 国际许可证可在未经同行评审认证的情况下获得)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是
摘要:多年来,有证据表明胞质喹酮还原酶NQO2在帕金森氏症诱导的多巴胺神经元变性模型中可能的贡献作用,但大多数数据已在体外获得。因此,我们问了一个问题,NQO2是否参与MPTP的体内毒性,MPTP是一种经典用于帕金森氏病诱导神经变性的神经毒素。首先,我们表明NQO2在小鼠黑质中表达,nigra多巴胺能细胞体和人多巴胺能SH-SY5Y细胞也表达。一种高度特异性的NQO2抑制剂S29434能够减少具有星形胶质细胞U373细胞的SH-SY5Y细胞的共培养系统中MPTP诱导的细胞死亡,但在SHSY5Y单一培养物中无活性。我们发现S29434仅略微防止MPTP中毒在体内中的MPTP中的黑质酪氨酸羟化酶 +细胞损失。该化合物在第7天产生了多巴胺能细胞存活的略有增加,MPTP治疗后21个,尤其是1.5 mg和3 mg/kg剂量方案。未达到统计显着性的救援效应(除了在第7天进行了一个实验),并且在最新时间点随着4.5 mg/kg剂量的降低。尽管在小鼠MPTP模型中缺乏NQO2抑制剂的强大保护活性,但我们不能排除酶在帕金森氏变性中的可能作用,尤其是因为它在多巴胺能神经元中基本上表达。