稿件标题 第 1 页 2 1. 稿件标题 3 靶向具有功能性催产素受体的神经元: 4 一组用于催产素受体可视化和操作的新型简单敲入小鼠系 5 6 2. 缩写标题 7 靶向具有功能性催产素受体的神经元 8 9 3. 所有作者姓名和所属机构的列表 10 Yukiko U. Inoue 1 、Hideki Miwa 2 、Kei Hori 1 、Ryosuke Kaneko 3 、Yuki Morimoto 1 、Eriko Koike 1 、11 Junko Asami 1 、Satoshi Kamijo 2 、Mitsuhiko Yamada 2 、Mikio Hoshino 1 、Takayoshi Inoue 1 12 13 1 国立神经科学研究所生物化学和细胞生物学系、国立神经病学和精神病学中心 14 、小平、东京187-8502,日本 15 2 日本国立精神卫生研究所神经精神药理学系,国家神经病学和精神病学中心,小平,东京 187-8553,日本 17 3 大阪大学前沿生物科学研究生院综合生物学实验室 KOKORO 生物学组,大阪吹田 565-0871,日本 19 20 4. 作者贡献 21 YUI、HM 和 RK 设计了实验。YUI、HM、KH、RK、YM、EK、JA 和 SK 22 进行了实验。YUI、HM、KH、RK、MY、MH 和 TI 分析并讨论了 23 结果。YUI、HM 和 TI 撰写了手稿。所有作者都已阅读并同意手稿的最终版本。 25 26 5. 通讯地址:Yukiko U. Inoue (yinn3@ncnp.go.jp) 和 Takayoshi 27 Inoue (tinoue@ncnp.go.jp) 28 29 6. 图表数量,5 30 7. 表格数量,0 31 8. 多媒体数量,2 32 9. 摘要字数,266 33 10. 意义陈述字数,124 34 11. 引言字数,840 35 12. 讨论字数,1,218 36 37 13. 致谢 38 本研究得到日本学术振兴会 KAKENHI 资助,资助编号为 16K10004、17H05967、19H04922,39 20K06467 给 YUI,18KK0442、19K08033 给 HM,17H05937、19H04895、20H02932 给 RK。这项工作还得到了 NCNP 神经和精神疾病院内研究经费(1-1、30-9、3-9)给 HM、MY、MH 和 TI 以及日本医疗研究和开发机构 (AMED) 大编号 JP21wm0425005 给 MH、21ek0109490h0002 给 TI 的支持。 43 本研究中使用的病毒载体由 AMED 的综合神经技术疾病研究 (Brain/MINDS) 脑图谱项目提供,资助编号为 45 JP20dm0207057 和 46 JP21dm0207111。作者感谢 NCNP 生物化学和细胞生物学系所有实验室成员的支持。47 48 14. 利益冲突 49
神经元是典型的生物信息处理器。然而,神经信息处理的理论模型,尤其是概念模型,越来越落后于我们对神经元作为电兴奋细胞的不断发展的经验理解。例如,过去二十年的实验工作已经明确证实,树突会经历活动依赖性重塑 [1, 2, 3],特别是树突棘位置、密度和功能的改变 [4],即使在成年人中也是如此。这种个体发生过程在功能上类似于树突结构和位置多样性的进化,因为它们已经适应了一系列功能角色 [5],例如通过突触可塑性实现深度学习 [6, 7]。因此,神经元不是静态结构,而是可以被视为在整个生命周期中不断发育。这一动态过程对神经元级和生物体级功能都有重大影响。例如,在大脑发生剧烈重塑和重建的生物体(如毛毛虫转变为蝴蝶或飞蛾)中,它们学到的一些记忆会保留下来并经受住这一过程 [8]。在其他情况下,记忆可以印刻在从其他组织再生的新大脑上 [9, 10],这凸显了大规模神经结构及其存储信息的可塑性。重塑的这些影响不仅仅是所谓的低等动物的问题,因为再生医学的应用很可能很快就会产生人类患者,他们的部分大脑已被幼稚干细胞的后代所取代,以治疗退行性疾病或脑损伤。
Vadim Bolshakov 恐惧控制的突触和神经元机制:海马-杏仁核相互作用的作用 陶武晨 GluD1 在大脑中的作用 11:00-11:30 咖啡休息,品尝当地甜点 11:30-1:35 第二节 感觉和神经调节 主席:庄汉婷 宋德华 Cav1.2-Filamin A 相互作用 Uhtaek Oh Tentonin 3,一种具有独特结构和门控特性的机械敏感通道 王云 转录组-形态学-功能整合分析揭示 TSPAN8 在初级感觉不同亚型轴突再生中双向调节 张旭 平行上升脊髓-橄榄通路用于感觉运动转化 李玉龙 通过构建多色基因编码的 GRAB 传感器监视体内神经调节 1:35-2:30 午餐休息 2:30-5:00 第五节转化医学与脑部疾病 主席:Bong-Kiun Kaang Tian-Ming Gao ATP 信号与抑郁症 Satoshi Kida cAMP 信号通路在 PTSD 中的作用 Min Zhuo ACC 和 AC1:过去、现在和未来 Yutian Wang 肽介导的蛋白质降解 - 研究工具和治疗应用 QI Wan 一种合成的 BBB 通透性三肽通过增加缺血性脑中的甘氨酸来提供神经保护 Ekaterina Pchitskaya 正常和正常脑组织中树突棘的 3D 形状和内质网功能分析
屏状核(CLA)是位于岛叶皮质和纹状体之间的一簇神经元。许多研究表明,CLA 在高级大脑功能中起着重要作用。此外,越来越多的证据表明 CLA 功能障碍与神经心理症状有关。然而,CLA 在发育过程中是如何形成的尚不完全清楚。在本研究中,我们分析了 CLA 的发育,特别关注了雌雄小鼠中 CLA 神经元的迁移情况。首先,我们发现 CLA 神经元是在胚胎第 10.5 天和第 12.5 天之间产生的,但大部分是在第 11.5 天产生的。接下来,我们使用 FlashTag 技术标记了在 E11.5 出生的 CLA 神经元,并发现大多数神经元在 E13.5 时到达大脑表面,但在 1 天后的 E14.5 时分布在 CLA 深处。GFP 标记细胞的延时成像显示,一些 CLA 神经元首先向外径向迁移,然后在到达表面后改变方向向内迁移。此外,我们证明了 Reelin 信号对于 CLA 神经元的适当分布是必需的。发育中的 CLA 神经元从向外迁移到“反向”迁移的转变与其他迁移模式不同,在其他迁移模式中,神经元通常沿某个方向迁移,即简单的向外或向内。未来对 CLA 发育特征和精确分子机制的阐明可能会为 CLA 独特的认知功能提供见解。
组件是大量的神经元,其同步射击被假设以代表记忆,概念,单词和其他认知类别。组件被认为可以在高级认知现象和低级神经活动之间提供桥梁。最近,已显示出一种称为组合微积分(AC)的组合系统,其曲目具有生物学上合理的组合操作,可以显示能够模拟任意空间结合的计算,还可以模拟复杂的认知现象,例如语言,推理和计划。但是,组件可以调解学习的机制尚不清楚。在这里我们提出了这样的机制,并严格证明,对于标记组件的分布定义的简单分类问题,可以可靠地形成代表每个类别的新组装,以响应类中的一些刺激。因此,该组件是对同一类的新刺激的响应可靠地召回的。此外,只要相应的类是相似的组件的群集,或者通常可以通过线性阈值函数与边缘分开,则这些类组件将可以区分区分。为了证明这些结果,我们利用具有动态边缘权重的随机图理论来估计激活的顶点的序列,从而在过去五年中对该领域的先前计算和定理产生了强烈的概括。被视为一种学习算法,这种机制完全在线,从很少的样本中概括,并且只需要温和的监督 - 在大脑模型中学习的所有关键属性。这些定理是通过实验来支持的,这些实验证明了组件的成功形成,这些组件代表了从此类分布中绘制的合成数据以及MNIST上的概念类别,这也可以通过一个AS-emerbly每位数字来分类。我们认为,从现实世界数据中提取属性(例如边缘或音素)的单独感觉预处理机制支持的这种学习机制可以是皮质中生物学学习的基础。关键字:关键字列表
诱导的多能干细胞(IPSC)可以研究神经发育和神经退行性疾病,例如自闭症谱系疾病,包括脆弱的X综合征和RETT综合征,肌萎缩性侧面硬化症,阿尔茨海默氏病,阿尔茨海默氏病,帕克森氏病,亨廷顿病,亨廷顿病,亨廷顿氏病,亨廷顿病。人IPSC线是通过对成纤维细胞,头发或血液样本的重编程而产生的,这些[2]是由患有疾病相关表型的患者直接捐赠的,并且可以通过诸如CRISPR/CAS9等基因组修饰[3]引入IPSCS的基因组中,并且可以将已知的基因型或引起疾病的突变捐赠。为了研究突变对细胞水平的影响,可以将IPSC分化为与疾病相关的神经元亚型。常规分化方案依赖于在培养基中添加特定的可溶性生长因子和化合物。这些因素触发了影响转录因子(TFS)的细胞内信号传导途径,从而通过改变基因表达水平并触发基因调节网络来诱导神经元分化。然而,这些方案可能非常精致且耗时,持续数周到几个月,并在不同的发育阶段和神经胶质细胞下产生不同神经元亚型的异质混合物。在人IPSC中某些神经源TF的强制表达捷径神经元分化,导致神经发生迅速,产生了高度均匀的神经元群体[4-7]。在这里,我们描述了鲁棒诱导的神经元IPSC系的培养以及不同的方法,以将神经源性TF和基因组修饰引入人IPSC,以及如何将这些IPSC区分开为成熟的神经元。
1949 年,心理学家唐纳德·赫布提出了他令人信服的“组装理论”,解释了大脑如何实现这一壮举。该理论可以用一句口头禅来概括:“一起激发的神经元会连接在一起”。该理论认为,对相同刺激作出反应的神经元会优先连接在一起,形成“神经元集合”。这些关联通过突触介导,突触是神经元之间进行交流的微小连接,它们会随着经验而改变,从而在学习和记忆中发挥关键作用。根据赫布理论,激活一些选定的神经元就足以触发整个神经元集合,从而为记忆回忆提供了一个推定的解释。然而,由于连接在一起的神经元会更多地一起激发,因此赫布集合在计算机模拟中经常会因活动爆发而失败,而在神经生物学中很少观察到这种不稳定性。这种差异提出了一个问题:如何将赫布理论与解剖学上合理的电路机制相协调,以提供快速的记忆回忆。
皮质锥体神经元的电活动由结构稳定、形态复杂的轴突树突树支持。轴突和树突在长度或口径方面的解剖差异反映了神经信息输入或输出的底层功能特化。为了正确评估锥体神经元的计算能力,我们分析了 NeuroMorpho.Org 数据库中的大量三维数字重建数据集,并量化了小鼠、大鼠或人类大脑皮层不同区域和层次的基本树突或轴突形态测量值。根据获得的形态测量数据对参与神经元电脉冲的离子总数和类型的物理估计,结合活动大脑消耗的葡萄糖所驱动的神经递质释放和信号传导的能量,支持在热力学允许的 Landauer 极限下进行高效的大脑计算,从而实现不可逆的逻辑运算。电压感应 S4 蛋白 Na + 、K + 或 Ca 2+ 离子通道 α 螺旋中的单个质子隧穿事件非常适合用作单个 Landauer 基本逻辑运算,然后通过穿过开放通道孔的选择性离子电流进行放大。这种计算门控的小型化允许在人类大脑皮层中每秒执行超过 1.2 个 zetta 逻辑运算,而不会因释放的热量而燃烧大脑。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月5日发布。 https://doi.org/10.1101/2022.05.05.05.490599 doi:Biorxiv Preprint