•此检查的重点是评估程序和关键数字资产的更改(CDA)•由于应检查上次检查,因此已添加或修改的系统已被添加或修改。•团队应至少查看3个系统,以审查其当前实施。
最新的EC场景从核的预计份额中更新显示出稳定的下降,尽管显而易见的好处是在深度脱碳的情况下,较高的情景为欧盟系统提供了明显的好处。基于此,核肌促进了2050年至少150 gW*容量的高扫描场景,这种情况需要: - 欧盟中要维持的25%电力生产的当前份额。- 在脱碳,氢等方面,难以浸泡的重工业的一部分。将被SMR(从2030年代初)覆盖,后来(从2040年代开始)。- 欧盟和国家级的行业和决策者动员
保留所有权利。未经许可就不允许重复使用。永久性。预印本(未经同行评审的认证)是作者/资助者,他已授予Medrxiv的许可证,以在2025年2月7日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.02.04.25321370 doi:medrxiv preprint
1 西班牙马德里 CIEMAT 技术部能源材料分部,Avda. Complutense 40, 28040 马德里 2 EDF Lab. Les Renardi è res,材料和组件力学部,1, Avenue des Renardi è res–Ecuelles,CEDEX,77818 Moret-Loing-et-Orvanne,法国;abderrahim.al-mazouzi@edf.fr 3 原子能与替代能源委员会,CEA,DEs,IRESNE,DEC/SESC,13108 Saint-Paul-Lez-Durance,法国;marjorie.bertolus@cea.fr 4 欧洲委员会联合研究中心 (JRC),卡尔斯鲁厄,Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,德国; marco.cologna@ec.europa.eu 5 Ringhals AB/NUQ, 432 58 Väröbacka,瑞典;pal.efsing@vattenfall.com 6 脉冲功率与微波技术研究所,卡尔斯鲁厄理工学院 (KIT),Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen,德国;adrian.jianu@partner.kit.edu 7 核能,芬兰 VTT 技术研究中心有限公司,02044 Espoo,芬兰;petri.kinnunen@vtt.fi 8 欧洲委员会联合研究中心 (JRC),1755 LE Petten,荷兰;karl-fredrik.nilsson@ec.europa.eu 9 弗劳恩霍夫无损检测研究所 (IZFP),Campus E3 1,66123 Saarbrücken,德国; madalina.rabung@izfp.fraunhofer.de 10 创新项目科,核安全和安保部聚变和技术,ENEA,Brasimone,40032 Camugnano,BO,意大利;mariano.tarantino@enea.it * 通讯地址:lorenzo.malerba@ciemat.es;电话:+34-91-346-6608
摘要在过去25年中,在LMNA基因中具有突变的各种实验模型中已经报道了核包膜(NE)扰动。尽管LMNA突变的NE扰动是横纹肌肉损伤的基本特征的假说,已获得广泛的接受,但由NE损伤引起的分子序列造成的分子序列以及它们如何基于疾病发病机理,例如心肌病(LMNA心脏疾病)仍然很差。最近,我们通过在成人心脏中采用心肌细胞 - 特异性LMNA缺失来阐明这种结果。,我们在心脏功能恶化之前观察到广泛的NE扰动,并在核周空间中旁边损害。高尔基体受到了特别的影响,导致细胞保护应激反应可能会因高尔基体的进行性恶化而破坏。在这篇综述中,我们讨论了LMNA心肌病的病因,并将核周的“井肌创伤”作为NE损伤和疾病发病机理之间的联系。
摘要 DNA 复制过程需要与其他 DNA 代谢交易协调,最终必须扩展到整个基因组,无论染色质状态、基因表达、二级结构和 DNA 损伤如何。DNA 复制的完整性和准确性对于维持基因组完整性、限制正常细胞中的转化以及为增殖的癌细胞提供靶向机会至关重要。因此,DNA 复制与染色质动力学和 3D 基因组结构紧密协调,我们才刚刚开始了解其背后的分子机制。虽然最近已经发现了很多关于 DNA 复制起始如何在不同基因组区域和核区域(所谓的“DNA 复制程序”)中组织和调节的信息,但我们对正在进行的复制叉的延长以及特别是对复制障碍的反应如何受到局部核组织的影响知之甚少。此外,核结构的特定组成部分如何参与复制应激反应仍然难以捉摸。在这里,我们回顾了已知的机制和因素,这些机制和因素协调了复制起始和压力下的复制叉进展,重点关注将基因组组织和核结构与细胞对复制干扰的反应联系起来的最新证据,并强调了开放的问题和未来的挑战,以探索这一令人兴奋的新研究途径。
。CC-BY-NC-ND 4.0 国际许可证 它是永久可用的。 是作者/资助者,已授予 medRxiv 许可以显示预印本(未经同行评审认证)预印本 此版本的版权所有者于 2025 年 1 月 31 日发布。;https://doi.org/10.1101/2025.01.29.25321066 doi:medRxiv 预印本
在本文中,我们的目标是通过使用纯量子算法以及量子机器学习算法来提供不太复杂的解决方案,以合理的时间解决概率安全研究(PSS)领域的问题。我们解决 EPS 问题的两个方面,即静态和动态。对于静态问题,我们感兴趣的是找到系统中可能产生严重事故的所有基本事件组合,我们建议通过量子算法来获得这些基本事件组合,使用有向图,而不是搜索 SAT 问题的所有解。我们的贡献是一种量子算法,它使用线性数量的量子比特,通过经典过滤器,我们可以找到所有能够产生这些事故的基本事件的组合。在动态情况下,我们感兴趣的是找到系统中的所有偶然序列,我们的主要兴趣是处理这些序列。在经典情况下,为了找到所有这些序列,我们使用系统的状态图并寻找当前状态和所有临界状态之间的所有路径。由于这个问题是 NP 完全的,我们提出了一个量子解决方案来找到所有这样的路径。我们提出了两种量子算法,均基于量子行走的哲学。第一个算法在有向无环图中查找源顶点和几个目标顶点之间的所有路径。该算法使用N个量子比特和M个门来寻找所有路径。第二个是第一个的混合版本,即使量子比特数量减少,它也能够处理大图。另一个贡献是采用动态时间规整 (DTW) 算法的量子方法来计算这些序列之间的相似性,以及能够使用长度动态变化的子序列在序列之间找到最佳匹配的版本。我们还提出了一种量子隐马尔可夫模型 (QHMM) 的学习策略,以便从系统的任何初始状态生成意外场景并实时管理系统。我们最终提出了量子 k-means 的改进版本。经典版本的k-means每次迭代的复杂度为O(K×M×N)。在我们的案例中,使用单个量子电路计算观测值和聚类中心之间的所有距离,并使用 Grover 的量子搜索算法,我们可以将复杂度降低到 O(log(K×M×N))。还提出了利用绝热量子的量子平衡k均值算法的另一个版本。最后,我们提出了一种比经典版本更快的 Convex-NMF 算法的量子版本。我们将提出的方法应用于 EPS 领域的实际系统,以此作为本论文的结论。
p62 是一种参与选择性自噬的衔接蛋白,正常情况下主要存在于细胞质中。由于 p62 具有核定位信号 (NLS) 和核输出信号,因此有人认为 p62 在细胞核和细胞质之间穿梭。我们研究了内源性脂质过氧化产物 4-羟基壬烯醛 (4-HNE) 对小鼠胚胎成纤维细胞内 p62 分布的影响。我们发现 4-HNE 处理会导致 p62 从细胞质易位到细胞核。进一步分析表明,4-HNE 直接与输出蛋白-1 (Xpo1) 结合,后者是各种蛋白质核输出所必需的蛋白质。进一步分析发现 4-HNE 以 p62 依赖的方式增强了核内 EGFP- NLS-CL1 降解。我们的结果表明,4-HNE 通过抑制 Xpo1 改变了 p62 定位到细胞核,并可能影响核内蛋白质的质量控制。