根据美国食品药品监督管理局 (FDA) 的规定,基因治疗通过转录或翻译转移的遗传物质或特异性改变宿主(人类)基因序列来发挥作用 (FDA 2020)。基因组编辑技术,例如锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN) 和成簇的规律间隔短回文重复序列 (CRISPR)-Cas 相关核酸酶,包括碱基编辑器,提供了各种工具来高精度地修改基因组 (Li et al. 2020)。这些基因编辑技术极大地加快了基因组编辑基础研究 (Doudna 2020) 和治疗产品的创造速度。尽管这些基因组编辑模式对于高度特异性的基因工程具有巨大的前景,但必须严格审查潜在的脱靶效应,以改进技术并优化其安全性和有效性。意外改变(也称为脱靶或脱靶编辑)的潜在影响是基因组编辑作为一种治疗策略的安全性的关键考虑因素。基因组的意外改变可能是由修改除故意针对的位点以外的 DNA 引起的(美国国家科学院 2017 年)。
通过改善植物农艺性状的基本特征,农业生物技术和基因工程的最新进展为粮食和农业部门带来了许多好处。使用序列特异性核酸酶(SSN)的靶向基因组编辑提供了一种通用方法,用于诱导广泛的生物体和细胞类型的靶向缺失,插入和精确的序列变化。基因组编辑工具,例如siRNA介导的RNA干扰,转录激活剂样核酸酶(Talens)和用于DNA修复的锌 - 纤维核酸酶(ZFN),已广泛用于商业用途。然而,发现CRISPR/CAS9系统作为基因组编辑工具,它彻底改变了生命科学领域。在细菌和古细菌中首次发现了定期间隔的短质体重复序列(CRISPR)作为病毒学防御性DNA段。CRISPR-CAS9作为一种先进的分子生物学技术,可以在任何农作物物种中产生精确的靶向修饰。crispr/cas9由于其效率,特异性和可重复性,该系统被认为是生物技术领域的“突破”。除了其在生物技术领域的应用外,它还广泛用于作物改善中。
成簇的规则间隔回文重复序列被称为 CRISPR。它是一种可以编程来改变、消除或激活基因组的蛋白质。这项尖端技术提供了广泛的实施可能性,并将在未来几年彻底改变口腔保健。最广泛使用的基因组编辑技术包括归巢内切酶、转录激活因子样效应核酸酶、锌指核酸酶和 CRISPR-CRISPR 相关蛋白 9 (Cas9)。这些适应性强的基因组编辑工具可以以序列特异性的方式改变基因组。由于其高效和准确,基因组编辑方法 CRISPR-Cas9 已引起人们的关注,成为抗击癌症的有力武器。本综述介绍了这种方法及其用途,特别是在牙科领域的用途。
大学。东京,日本东京都文京区本乡 7-3-1,邮编 113-0033 通讯作者:Hiroshi Nishimasu,nisimasu@bs.s.u-tokyo.ac.jp 电话:+81-3-5841-4391 收稿日期:2018 年 1 月 8 日/修订日期:2018 年 2 月 17 日/接受日期:2018 年 2 月 17 日 摘要 RNA 引导的核酸内切酶 Cas9 参与原核生物 CRISPR-Cas 过继免疫系统,可与引导 RNA 结合并切割与 RNA 引导互补的双链 DNA。近年来,Cas9 已被用作从基础研究到临床应用等广泛领域的多功能基因组编辑工具。然而,Cas9 识别和切割 DNA 的分子机制尚不清楚,其在基因组编辑中的应用仍有许多问题有待解决。我们阐明了最广泛用于基因组编辑的 S. pyogenes Cas9 与向导 RNA 及其靶 DNA 复合的晶体结构,从而首次深入了解了 Cas9 介导的 DNA 切割机制。此外,我们还解决了来自三种不同细菌的 Cas9 核酸酶和 Cas12a (Cpf1) 核酸酶的晶体结构,它们也用于基因组编辑。总的来说,这些结构研究阐明了 CRISPR-Cas 核酸酶的机制趋同和发散,为
基因疗法已成为各种疾病(包括血液疾病,眼部疾病,癌症和神经系统疾病)的有希望的治疗策略。基因编辑技术的出现促进了研究人员专门靶向和修改真核细胞基因组的能力,使其成为基因治疗的宝贵工具。这可以通过体内或离体方法进行。基因编辑工具,例如锌指核酸酶,转录激活剂样效应子核酸酶和与CRISPR-Cas相关的核酸酶,可以用于基因治疗目的。在这些工具中,基于CRISPR-CAS的基因编辑之所以脱颖而出,是因为它通过设计简短的指南RNA来引入可遗传基因组变化的能力。本评论旨在提供CRISPR-CAS技术的概述,并总结有关CRISPR/CAS9 ge-Nome编辑技术在治疗最普遍的神经退行性疾病中的最新研究,其中包括阿尔茨海默氏病,帕金森氏病,亨廷顿病,亨廷顿氏病,杏仁脂性下层状硬质量和尖顶Ataxia ataxia,关键词:基因编辑,神经退行性疾病,CRISPR/CAS9,阿尔茨海默氏病,帕金森氏病,亨廷顿氏病,肌萎缩性侧面硬化症,脊椎胡子共济失调
基因治疗已成为治疗各种疾病(包括血液疾病、眼部疾病、癌症和神经系统疾病)的一种有前途的治疗策略。基因编辑技术的出现促进了研究人员专门针对和修改真核细胞基因组的能力,使其成为基因治疗的宝贵工具。这可以通过体内或体外方法进行。基因编辑工具(例如锌指核酸酶、转录激活因子样效应核酸酶和 CRISPR-Cas 相关核酸酶)可用于基因治疗目的。在这些工具中,基于 CRISPR-Cas 的基因编辑脱颖而出,因为它能够通过设计短向导 RNA 引入可遗传的基因组变化。本综述旨在概述 CRISPR-Cas 技术,并总结 CRISPR/Cas9 基因组编辑技术在治疗最常见的神经退行性疾病(包括阿尔茨海默病、帕金森病、亨廷顿病、肌萎缩侧索硬化症和脊髓小脑共济失调)方面的最新研究。关键词:基因编辑、神经退行性疾病、CRISPR/Cas9、阿尔茨海默病、帕金森病、亨廷顿病、肌萎缩侧索硬化症、脊髓小脑共济失调
摘要最近,工程化的核酸酶具有革命的基因组编辑,以在复杂的真核基因组中的特定位点扰动基因表达。这些基因组编辑工具的三个重要类别是锌指核酸酶(ZFN),梅甘(Meganu)和转录激活剂样效应核酸蛋白酶(TALEN),它们用作构成靶标特异性DNA结合结构域和分子scissors scissors Orecartors orcissor or Cilliction scissor or Crimentector或bigractionals的杂交系统。此外,最近的II型II型定期间隔间的短质体重复序列(CRISPR)相关蛋白(CRISPR/ CAS9)系统已成为最喜欢的植物基因组编辑工具,用于其精确和RNA的基于RNA的特异性,这与依赖于蛋白质特异性的对应物不同。质粒介导的多个SGRNA和CAS9的质粒介导的共传递可以同时改变一个以上的靶基因座,从而实现多重基因组编辑。在这篇综述中,我们讨论了CRISPR/CAS9技术机制,理论及其在植物和农业中的应用中的最新进展。我们还建议CRISPR/CAS9作为有效的基因组编辑工具,具有作物改善和研究基因调节机械性和染色质重塑的巨大潜力。
摘要:基因组编辑是一种利用工程化核酸酶对许多生物体基因组进行精确修改的新兴技术。所有基因组编辑工具都依赖于在目标位点处创建双链断裂 (DSB),然后通过同源定向修复 (HDR) 或非同源末端连接 (NHEJ) 途径进行修复,从而产生所需的遗传修饰。主要的基因组编辑工具包括锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN) 和 CRISPR/Cas9 系统。通过创建精确的基因型修饰,这些工具可以在各种科学领域(尤其是医学、生物研究和生物技术)中创建不同的表型。自 2010 年以来,随着 TALEN 的出现,模式生物的基因组修饰已成为可能。随后,2013 年,CRISP/Cas9 系统开启了基因组编辑研究的新时代,这可谓是生物学的一场革命。此外,在不久的将来,基因组编辑将能够治疗遗传疾病。此外,基因组编辑在生产具有有用特性的不同作物和牲畜方面的前景也十分光明。这些产品被称为非转基因生物 (GMO) 的编辑作物。在这篇综述中,将介绍并简要比较主要的基因组编辑工具。
要用作治疗性,基因组编辑工具必须表现出较高的靶向效率和最小的有害或不需要的脱靶编辑,并且可传递到感兴趣的器官。重要的是要注意,疾病靶标将决定必须满足这些标准的确切程度。在该领域的早期努力使用了诸如锌指核酸酶和转录激活剂样效应子核酸酶(TALENS)之类的平台,但是对于每个新的目标编辑站点8设计和验证了新的锌指核酸酶或塔伦蛋白的要求,这些方法受到了阻碍。然而,这些广泛的蛋白质重新设计需求通过发现,机械阐明和适应性的适应性来缓解,以簇定期间隔短的短质体重复(CRISPR)平台进行基因组编辑。
