调节和编辑遗传信息的能力对于研究基因功能和发现生物学机制至关重要。自从1971年首次使用固定酶生产特定的DNA片段以来,科学家一直在利用原核生物分子进行基因编辑1。除了限制酶2外,DNA修饰工具类别还包括重组酶3和可编程的核酸酶,例如毛核酸酶,锌指核酸酶,转铺激活剂样效应子核酸酶和CRISPR – CAS Systems 4。修饰特定基因座的DNA结合蛋白具有非常高级的科学,生物技术和医学。但是,开发模块化DNA结合蛋白以在自定义目标上结合的复杂性通常需要蛋白质工程专业知识。在过去的十年中,CRISPR – CAS9技术通过消除了对工程定制靶向靶向DNA结合蛋白的任何专业知识的需求,从而改变了基因组工程,因为CRISPR-CAS9的目标特异性取决于核酸的基础配对,而不是蛋白质-DNA识别。在本质上,CRISPR -CAS系统是一种用于裂解入侵核酸5的实质性适应性免疫机制。在各种细菌和古细菌中存在各种CRISPR -CAS系统,它们的组成部分和作用机理不同。例如,1类CRISPR – CAS系统可以使用多蛋白效应子络合物,而2类系统具有单个效应蛋白;总的来说
基因编辑领域的最新进展为植物生物学研究提供了前所未有的工具,为改良现有作物和从头驯化新作物提供了无限的潜力。本期《基因编辑及其应用》焦点问题介绍了基因编辑领域的最新技术创新,解决了在基础和应用植物生物学研究中使用该技术所面临的挑战,并提供了该领域未来发展的观点。本期焦点问题包含 9 篇由基因编辑子领域专家深入撰写的更新,16 篇研究论文重点介绍了最近的技术突破或基因编辑在解决生物学问题和/或改良作物中的应用。在本文中,我们首先总结了开发新型基因编辑试剂、将试剂递送到植物细胞中、大规模分析编辑事件和去除转基因方面取得的进展。然后,我们讨论了实现各种类型基因修饰的最新进展,包括点突变、基因打靶 (GT)、染色体工程和表观遗传修饰。此外,我们利用本期焦点问题中提供的例子,重点介绍了使用 CRISPR(成簇规律间隔短回文重复序列)介导的基因编辑在作物改良和从头驯化中的研究。可编程核酸酶是基因组编辑领域爆炸式增长的核心。CRISPR 相关蛋白 9 (Cas9)(Jinek 等人,2012 年)和 Cas12a(Zetsche 等人,2015 年)核酸酶及其衍生物是基因编辑中使用最广泛的核酸酶。然而,细菌和古细菌中存在许多多样且未开发的 CRISPR-Cas 系统,它们为扩展我们的植物基因编辑工具箱提供了巨大潜力(Burstein 等人,2017 年)。新的 CRISPR–Cas 系统可能使我们能够克服原间隔区相邻基序序列、靶标特异性和 Cas9 的蛋白质大小的限制。新的核酸酶还可以潜在地降低育种许可成本
与锌指核酸酶 (ZFN) 和转录激活因子样效应核酸酶 (TALENS;图 1) 相比,成簇的规律间隔短回文重复序列-CRISPR 相关 9 (CRISPR-Cas9) 技术设计简单、成本低、效率高、操作简单,已成为近年来应用最广泛的基因编辑技术。CRISPR-Cas9 是一种在细菌中发现的适应性免疫反应,与其他基因编辑技术不同,它可以利用病毒和非病毒平台在多种生物体和细胞类型的双链断裂 (DSB) 中提供熟练的基因组编辑。1 CRISPR-Cas9 技术正在迅速应用于所有生物医学研究领域,包括心血管 (CV) 领域,它促进了人们对心血管疾病 (CVD)、心肌病、电生理学和脂质代谢的更深入了解,并创建了各种细胞和动物模型来评估新疗法。2
基因编辑是一种尖端技术,正在迅速重塑生物技术,医学和农业学科。遗传构成的精确改变需要在感兴趣的区域引入DNA病变,并利用DNA损伤响应和同源驱动的修复机制。DNA容易受到各种生理和病理因素的每日损害[1],导致DNA双链断裂(DSB)或单链断裂(SSB或Nick)可能会触发基因组恢复,如果未经修复或不正确地修复时[2]。这些事件可以触发下游过程,例如致癌或程序性细胞死亡[3]。为维持基因组完整性,维修机制网络已经发展,它们的激活是由内源性或外源性应激引起的DNA损伤类型决定的。基因编辑技术利用了此内在修复网络的功能来重写DNA。四个主要的编辑平台包括巨型核酸酶,锌纤维核酸酶(ZFN),转录激活剂样效应核酸酶(TALENS)和定期插入的短短圆锥形重复序列(CRISPR)。天然巨核触发了DNA损伤,但需要独特的识别序列才能进行动作,这使得很难找到目标区域特异性的endonucle-Ases [4]。重新设计核酸酶的努力导致了替代方案的发展,例如ZFNS和TALES,其中DNA结合结构融合到了FOKI限制酶的裂解结构域。这种大大改善了人类细胞和动物模型中的基因编辑,从而促进了基因编辑的治疗应用[5-8]。然而,可行性问题仍然无法解决,因为这些人工核酸酶除了随机的脱靶诱变外,还需要蛋白质工程的目标序列,这使整个过程中的目标序列的每一个变化都使整个过程都易于努力且昂贵[9]。包装和大型核酸酶的包装和交付也很困难,进一步限制了体内应用[7]。另一方面,CRISPR技术在编辑方式上具有非常重要的优势,因为它克服了每个新目标站点对蛋白质工程的需求,从而使其易于重编程[4]。但是,由于CRISPR会产生非专业的DSB,可以介绍 -
世界依赖农业,而农业本身也面临着巨大的挑战,例如满足不断增长的人口对食物、纤维和生物能源的需求。必须利用不断减少的可耕地面积来满足这些需求,同时还要适应导致洪水、干旱和高温更频繁的气候变化,以及培育能够抵抗疾病和害虫且几乎不使用有害环境的化学物质的农作物。所有这些挑战都需要创新的解决方案,这些解决方案将源自植物科学和农业领域的基础和应用研究,包括基因组编辑。基因组编辑是指实现精确的基因组修改,例如在细胞或生物体中对 DNA 进行位点特异性插入、删除、替换和表位等位基因改变。基因组编辑基本上是基于体内 DNA 双链断裂 (DSB),这种断裂是由经过编程以识别预选基因组位点的工程内切酶诱导的,并利用细胞 DSB 修复机制 (Carroll, 2014)。可编程核酸酶包括巨核酸酶( Gong 和 Golic,2003 年)、锌指核酸酶 (ZFN)(Urnov 等人,2005 年)、转录激活因子样效应核酸酶 (TALEN)(Christian 等人,2010 年;Li 等人,2011 年)和成簇的规律间隔的短回文重复序列 (CRISPR) 相关核酸酶 (Cas)(Jinek 等人,2012 年;Cong 等人,2013 年;Mali 等人,2013 年)。此外,工程化核酸酶变体可以在没有 DSB 的情况下进行基因组编辑(例如,通过引起 DNA 单链断裂)(Rees and Liu,2018 年)或表观基因组编辑(完全没有 DNA 断裂,也没有 DSB 修复)(Holtzman and Gersbach,2018 年)。基因组编辑已成为最重要的生物技术工具,它促进了我们的生物学知识和生物技术领域本身的增长,并做出了巨大贡献,推动了工业、医学和农业的快速发展。在过去的 10 年中,我们目睹了基于 CRISPR 的基因组编辑技术的快速发展及其在植物功能基因组学和作物改良等各个领域的应用。植物中的基因组编辑技术包括序列特异性核酸酶的工程设计、编辑试剂的递送、编辑事件的产生和选择以及完整植物的表征和利用,这对公众接受基因组编辑植物和监管部门的批准具有进一步的影响。在过去的十年中,基因组编辑平台已经建立并应用于 45 多个植物属(Shan et al.,2020)。然而,为了更好地理解基因组编辑的分子和遗传机制、持续改进和植物中基因组编辑技术的新应用,仍然需要进行大量的研究工作。具体而言,植物基因组编辑面临如下主要挑战。
核酸的选择性分裂一直是最具挑战性的主题之一,并且报道了许多优雅的人工核酸酶。1然而,它们中的大多数利用脱氧核糖在目标部位的氧化裂解,而自然核酸酶展示的水解分裂从未被模仿。最大的障碍是为此目的缺乏适当的催化残留物:尚未实现线性DNA的非酶促水解。2线性DNA是如此稳定,以至于催化剂必须表现出显着的加速度(pH 7,25oC的磷酸二酯连接的半衰期估计为2亿年)。3•4至少出于某些目的而言,比氧化性裂解是可取的,因为不涉及可扩散的物种,并且在必要时可以将所得的DNA片段酶上宗教。最近,作者发现灯笼金属离子有效地切割质粒超螺旋DNA。5这里我们表明,这些金属离子的催化成功地适用于单链和
基因组编辑是一种在基因组中特定位置生成 DNA 序列变体的技术。这可以发生在蛋白质的编码区,从而影响其功能,也可以发生在启动子区,从而影响细胞类型特异性或启动子活性的时间。基因组编辑工具箱中最著名的系统是 CRISPR/Cas9,基因剪刀的发明者 Emmanuelle Charpentier 和 Jennifer Doudna 因该系统获得了 2020 年诺贝尔奖 2 。替代系统是转录激活因子样效应核酸酶 (TALEN) 或锌指核酸酶 (ZFN)。所有这些编辑工具都以基因组中的特定序列为目标,并在目标位点诱导 DNA 双链断裂。一旦 DNA 被切断,细胞就会使用自己的 DNA 修复机制,包括几乎所有细胞类型和生物体中发生的两种主要机制:同源定向修复 (HDR) 和非同源末端连接 (NHEJ),分别导致靶向整合或基因破坏 3 。
自1996年第一个站点定向的核酸酶(SDN)和锌指核酸酶(ZFN)的发展以来,基因组编辑场发生了迅速变化(Kim等,1996)。自此以来,已经开发了许多工具,可以实现遗传序列的目标变化,最广泛使用的是CRISPR/CAS9(Jinek等,2012)。SDN允许研究人员轻松地靶向基因组中的序列,并在包括植物在内的各种生物体中以非常特定的方式引入变化(Feng等,2013)。SDNS的使用导致自引入以来的短时间内在植物中产生了各种各样的新表型。早期基因组编辑的重点主要是在基因敲除上,这很容易通过靶向核酸酶实现。SDNS形成双链断裂(DSB),由主机的本机维修机械修复。这通常会导致返回原始基因组序列,或插入或删除
摘要:Facioscapulohumeral营养不良(FSHD,OMIM:158900,158901)是成年人中最常见的Dys-Tropherphy,到目前为止,还没有治疗。已经表征了疾病的不同基因座,它们都导致Dux4蛋白的异常表达,这会损害肌肉的功能,最终导致细胞死亡。在这里,我们使用基因编辑来试图通过靶向其poly(a)序列永久关闭Dux4表达。我们在FSHD成肌细胞上使用了类似转录激活剂样效应子核酸酶(TALEN)和CRISPR-CAS9核酸酶。测序了150多个Topo克隆,仅观察到4%的indels。重要的是,在其中2个中,Dux4 poly(a)信号在基因组水平上被消除,但由于使用了非典型上游poly(a)信号序列,仍会产生DUX4 mRNA。这些实验表明,在基因组水平上靶向DUX4 PA可能不是FSHD治疗的适当基因编辑策略。
基因组突变是生物多样性的驱动力,但也是导致从遗传性疾病到神经系统病变和癌症等大量人类疾病的原因。对于大多数遗传性疾病,迄今为止尚无治愈方法。对精确的、最好是针对特定患者的治愈治疗方案的需求自然很高。通过锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN) 和成簇的规则间隔短回文重复序列 (CRISPR)/Cas 进行的基因组编辑可以实现对基因组的定向操作,从而为治疗此类疾病提供了机会。虽然需要制定和考虑道德和监管准则,但基因组编辑用于治愈治疗的前景无疑令人兴奋。在这里,我们回顾了基于基因组编辑技术的治疗方法的现状。我们重点介绍了最近的突破,描述了采用基因组编辑医学的临床试验,讨论了其优点和缺陷,并展望了基因组编辑的未来。
