产后发育中的突触修饰对于神经网络的成熟至关重要。兴奋性突触的发育成熟发生在树突状棘的基因座,受生长和修剪动态调节。纹状体棘投射神经元(SPN)从大脑皮层和thalaus中获得兴奋性输入。spns和纹状体层间间接途径(ISPN)的SPN具有不同的发育根和功能。这两种类型的SPN的树突状脊柱成熟的时空动力学仍然难以捉摸。在这里,我们描绘了伏齿木剂和伏齿核(NAC)中DSPN和ISPN的树突状刺的发育轨迹。我们通过将Cre依赖性的AAV-EYFP病毒微注射到新生儿DRD1-CRE或Adora2a-Cre小鼠中,并通过微注射CRE依赖性AAV-EYFP病毒标记了SPN的树突状刺,并在三个级别上分析了旋转生成,包括不同的SPN细胞类型,子区域和后期。在背外侧纹状体中,DSPN和ISPN的脊柱修剪发生在产后(P)30 - P50。在背侧纹状体中,DSPN和ISPN的脊柱密度在P30和P50之间达到了峰值,而DSPN和ISPN的脊柱修剪分别发生在P30和P50之后。在NAC壳中,在p21 - P30后修剪DSPN和ISPN的棘突,但在NAC外侧壳的ISPN中未观察到明显的修剪。在NAC核心中,DSPN和ISPN的脊柱密度分别达到P21和P30的峰值,随后下降。总体而言,DSPN和ISPN中树突状棘的发育成熟遵循背侧和腹侧纹状体中不同的海上轨迹。
Abstract Neurons of the ventrolateral periaqueductal gray (vlPAG) and adjacent deep mesencephalic reticular nucleus (DpMe) are implicated in the control of sleep-wake state and are hypothesized components of a flip-flop circuit that main- tains sleep bistability by preventing the overexpression of non-rapid eye movement (NREM)/REM sleep intermediary states (NRT)。为了确定VLPAG/DPME神经元在维持睡眠双重性方面的贡献,我们将触发器电路的计算机模拟与VLPAG/DPME神经元的局灶性灭活相结合,通过微透析通过GABA A的受体激动剂在自由的肌肉中递送Mycroprogrination n = 25),以进行gaba A受体激动剂(N = 25)的仪器(n = 25)。rem睡眠,与先前的研究一致。但是,我们对体内NRT动力学的分析以及Flop-Flop电路模拟产生的分析表明,当前的思维过于狭窄地集中在REM睡眠不活跃种群对REM睡眠控制中的REM睡眠群体对VLPAG/DPME参与的贡献。我们发现,Muscimol介导的REM睡眠的大部分介导的增加被更恰当地归类为NRT。失去睡眠的丧失伴随着REM睡眠的分裂,这证明了Short Short Rem睡眠爆发数量的增加。rem睡眠碎片化源于源自REM睡眠中的NRT回合的数量和持续时间。相比之下,nREM睡眠回合也不会被VLPAG/DPME失活所破坏。在触发电路电路模拟中,不能仅仅通过抑制REM睡眠不活跃的种群来进行这些变化。取而代之的是,需要对REM睡眠的组合抑制和无效的VLPAG/DPME亚群来复制NRT动力学的变化。
为了确保孕产妇行为的无限制表达,需要最小化皮质激素释放因子(CRF)系统的活性。CRF结合蛋白(CRF-BP)可能对这种适应至关重要,因为它的主要功能是隔离可自由获得的CRF和尿素素1,从而抑制CRF受体(CRF-R)信号传导。到目前为止,几乎没有研究CRF-BP在母体大脑中的作用,并且在减少应力轴激活中的潜在作用尚不清楚。我们研究了下丘脑的室室核(PVN)内CRF-BP和CRF-R的基因表达。在泌乳大鼠中,与处女大鼠相比,PVOCOLULUR PVN中的CRH-BP表达明显更高,而PVN中的CRH-R1表达明显更低。急性CRF-BP在PVN中抑制CRF(6-33)在大坝中无应力的条件下增加了基底等离子体皮质酮的浓度。此外,虽然急性对CRF的急性内部输注增加了处女大鼠的皮质酮分泌,但它在媒介物(ver)中耐药的哺乳动物大鼠的效果无效,可能是由于CRF-BP的缓冲作用。的确,使用CRF的预处理(6-33)恢复了对泌乳大鼠中CRF的皮质酮反应,强调了CRF-BP在维持泌乳中衰减应激反应性中的关键作用。据我们所知,这是将下丘脑CRF-BP活性与下丘脑 - 垂体 - 肾上腺轴调节中的第一项研究。最后,慢性PVN抑制CRF-BP强烈降低了母体侵略,对母体动机和护理产生了适度的影响。在行为方面,在非压力条件下,PVN的急性CRF-BP抑制了毯子护理60分钟,在输注后90分钟舔/修饰与工具处理的大鼠相比,舔/润滑,同时增加了对入侵者的产妇侵略性。综上所述,在产后期间,CRF-BP在PVN中的完整活性对于应力轴的降低反应性以及适当的母体行为的全部表达至关重要。
本研究介绍了一种噪声消除技术,用于 MER 机器通过丘脑底核深部脑刺激/或刺激器 (STN-DBS) 在局部场电位 (LFP) 中进行电刺激获取的丘脑底核 (STN) 神经元微电极信号。我们提出了一种新方法,用于消除由不同于典型 LFP (低频电位) 信号的脉冲发生器触发的诱导刺激伪影。该方法经过处理和准确性测试,并计算用于体外状态的执行。结果表明,该方法可以很好地抑制刺激伪影。并且还在帕金森病 (PD) 受试者 (患者) 的体内状态下进行了测试。它用于处理从 PD 手术中收集的 LFP 信号,以初步探索 STN、DBS 参数 (刺激强度、刺激电压、频率和幅度脉冲宽度) 内 beta 波段同步变化的定量依赖性。研究结果表明,DBS 过程可以克服过度的β频率(30Hz)活动,并且随着 DBS 电流在 1-3V 范围内增加,刺激频率在 60-120Hz 范围内增加,减少程度也随之增加。该方法为探索诱导电刺激对帕金森脑活动的即时效果提供了科学研究和技术支持,并可作为未来技术的研究工具。
1精神病学系的遗传流行病学系,中央心理健康研究所,曼海姆医学院,海德堡大学,德国曼海姆,海德堡大学; 2德国曼海姆海德堡大学医学院曼海姆医学院中央心理健康研究所转化脑研究系; 3德国曼海姆的Hitbr Hector Translation Brain Research GGMBH; 4德国海德堡的德国癌症研究中心(DKFZ); 5波恩医学与大学医院博恩研究所重建神经生物学研究所,德国波恩; 6海德堡大学医学院曼海姆医学院心理健康研究所心理药理学研究所,德国曼海姆68159; 7 Louis A. Faillace,医学博士,医学博士,精神病学和行为科学系,麦戈文医学院,德克萨斯大学健康科学中心,休斯敦,休斯敦,德克萨斯州休斯敦,美国德克萨斯州77054,美国; 8中央心理健康研究所,医学院曼恩海姆,海德堡大学,德国曼尼海姆市医学院曼海姆,中央心理健康研究所,生物库中心,生物库中心
摘要背景深部脑刺激 (DBS) 正在被研究作为治疗难治性强迫症 (OCD) 的方法。许多不同的大脑目标正在接受试验。这些目标中的几个例如腹侧纹状体(包括伏隔核 (NAc))、腹侧囊、下丘脑脚和终纹床核 (BNST))属于同一网络,在解剖学上彼此非常接近,甚至重叠。关于特定目标中的各种刺激参数将如何影响周围解剖区域并影响 DBS 的临床结果的数据仍然缺失。方法在一项对 11 名接受 BNST DBS 的参与者的初步研究中,我们通过针对患者特定的电场模拟来研究哪些解剖区域受到电场的影响,以及这是否与临床结果相关。我们的研究结合个体患者12和24个月随访时的刺激参数以及术前MRI和术后CT图像数据,计算电场分布,建立个体刺激场的解剖模型。结果 12和24个月随访时,BNST内刺激的个体电刺激场相似,主要涉及内囊前肢(ALIC)、内囊膝部(IC)、BNST、穹窿、前内侧苍白球外核(GPe)和前连合。在12个月的随访中,腹侧ALIC和前内侧GPe的耶鲁-布朗强迫症量表测量的临床效果与刺激之间存在统计学上显着相关性(p <0.05)。结论 许多正在研究的强迫症目标在解剖学上接近。从我们的研究可以看出,脱靶效应是重叠的。因此,ALIC、NAc 和 BNST 区域的 DBS 可能被认为是对同一靶标的刺激。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年9月14日。 https://doi.org/10.1101/2024.09.12.611703 doi:Biorxiv Preprint
通过单击工具栏中的图标,您可以查看通量的首选项。您可以移动滑块以设置屏幕的构图。您可以看到我始终将我的矿山设置为更黄。它知道我在凌晨6:30醒来,并假定我的就寝时间是晚上10:30。您可以看到,当我们接近邮政编码的日落时,它将改变我的屏幕的组成,甚至在过去的睡前时更加急剧。
摘要 下丘脑的 kisspeptin (Kiss1) 神经元对青春期发育和生殖至关重要。弓状核 Kiss1 (Kiss1 ARH) 神经元负责促性腺激素释放激素 (GnRH) 的脉冲式释放。在女性中,表达 Kiss1、神经激肽 B (NKB) 和强啡肽 (Dyn) 的 Kiss1 ARH 神经元的行为在整个卵巢周期中都会发生变化。研究表明,17 β -雌二醇 (E2) 会降低这些神经元中的肽表达,但会增加 Slc17a6 (Vglut2) mRNA 和谷氨酸神经传递,这表明从肽能信号传导转变为谷氨酸能信号传导。为了研究这种转变,我们结合了转录组学、电生理学和数学建模。我们的结果表明,E2 治疗上调了电压激活钙通道的 mRNA 表达,提高了有助于高频爆发放电的全细胞钙电流。此外,E2 治疗降低了典型瞬时受体电位 (TPRC) 5 和 G 蛋白偶联 K + (GIRK) 通道的 mRNA 水平。当使用 CRISPR/SaCas9 删除 Kiss1 ARH 神经元中的 Trpc5 通道时,缓慢的兴奋性突触后电位被消除。我们的数据使我们能够制定一个生物物理上真实的 Kiss1 ARH 神经元数学模型,表明 E2 改变了这些神经元中的离子电导,从而实现了从高频同步放电(通过 NKB 驱动的 TRPC5 通道激活)到促进谷氨酸释放的短爆发模式的转变。在低 E2 环境中,Kiss1 ARH 的同步放电
由于存在较长的 poly-A/T 均聚物片段,这会妨碍测序和组装,因此对海鞘 Oikopleura dioica 的线粒体基因组进行测序是一项艰巨的任务。本文,我们报告了通过将 Illumina 和 MinIon Oxford Nanopore Technologies 获得的多个 DNA 和扩增子读数与公共 RNA 序列相结合,对 O. dioica 的大部分线粒体基因组进行测序和注释。我们记录了大量 RNA 编辑,因为线粒体 DNA 中存在的所有均聚物片段都对应于线粒体 RNA 中的 6U 区域。在 13 个典型的蛋白质编码基因中,我们能够检测到 8 个,外加一个未分配的开放阅读框,该阅读框与典型的线粒体蛋白质编码基因缺乏序列相似性。我们发现 nad3 基因已转移到细胞核中并获得了线粒体靶向信号。除了两个非常短的 rRNA 外,我们只能识别出一个 tRNA(tRNA-Met),这表明 tRNA 基因丢失多次,而核基因组中线粒体氨酰-tRNA 合成酶的丢失也支持了这一观点。基于已识别的八个典型蛋白质编码基因,我们重建了最大似然和贝叶斯系统发育树,并推断出该线粒体基因组的极端进化率。然而,附肢动物在被囊动物中的系统发育位置无法准确确定。