-召集人:Pathey, Luc(PSI - Paul Scherrer 研究所); Sikora, Marcin(SOLARIS 国家同步辐射中心,雅盖隆大学,Czerwone Maki 98, 30-392 Krakow, 波兰); Kordyuk, Alexander(基辅学术大学)
摘要:Monte Carlo(MC)是研究散射媒体中光子迁移的强大工具,但很耗时以解决反问题。为了加快MC模拟的速度,可以将缩放关系应用于现有的初始MC模拟,以生成具有不同光学属性的新数据集。我们命名了这种方法基于轨迹,因为它使用了初始MC模拟的检测到的光子轨迹的知识,这与基于较慢的光子方法相反,在这种方法中,新型MC模拟具有新的光学特性。我们研究了缩放关系的收敛性和适用性限制,这两者都与所考虑的轨迹样本也代表了新的光学特性有关。为了吸收吸收,缩放关系包含平滑收敛的兰伯特啤酒因子,而对于散射,它是两个快速分化因子的乘积,其比例很容易达到十个数量级。我们通过研究给定长度的轨迹中的散射事件数量来研究这种不稳定。我们根据记录的轨迹中的最小最大散射事件进行了散射缩放关系的收敛测试。我们还研究了MC模拟对光学性质的依赖性,这在反问题中最关键,发现散射衍生物归因于小泊松分布的散射事件分布的小偏差。本文也可以用作教程,有助于理解比例关系的物理学与其局限性的原因,并制定了应对它们的新策略。
“在我们的受控实验室实验中,我们模拟了一个湍流的自由空间量子通道,以评估我们的自适应光学系统的有效性。结果令人震惊,”博士学位Lukas Scarfe说。“没有自适应光学,湍流引入了超过安全阈值的错误,使量子密钥分布变得不可能。但是,通过启用了自适应光学功能,我们成功恢复了通道,执行高维QKD并每个光子最多三个位编码,这显着提高了关键的生成率。”
带有Moir'E超级晶格的纳米光子设备目前由于光子的独特性和高效率控制而引起了广泛的兴趣。到目前为止,实验研究主要集中在单层设备上,即,将两个或多层光子晶体图案合并并蚀刻在单一材料中。相比之下,具有多层材料的扭曲的光子晶体在纳米化技术中引起了挑战,因为上层材料的生长通常需要没有纳米结构的光滑底层。在此,我们在石墨/Si 3 N 4异质结构中制造了扭曲的杂波光子晶体。我们使用干燥转移方法将石墨堆放在底部Si 3 N 4的顶部,并具有预蚀刻的光子晶体图案。选择性干蚀刻食谱用于蚀刻两个光子晶体层,从而提高了对齐的质量和准确性。在实验中清楚地观察到了从Moir´e位点的可见波长约700 nm处的腔光子模式。这些结果揭示了杂词纳米光量设备的实验图,并为在新的自由度下设计灵活性和控制光子开辟了道路。
在这项工作中,我们提出了一种使用傅立叶变换红外光谱法(FTIR)来确定薄超级传导膜的中红外折射率。尤其是,我们在波长范围为2.5至25 µm的波长范围内对10 nm厚的NBN和15 nm厚的MOSI膜进行了FTIR传播和反射测量,对应于12-120 THz或光子的频率50-500 MEV。To extract the mid-infrared refractive indices of the thin films from FTIR measure- ments, we used the Drude-Lorentz oscillator model to represent the dielectric functions of the films and implemented an optimization algorithm to fit these oscillator parameters, minimizing the error between the measured FTIR spectra and the simulated spectra calculated using the dielectric func- tions of the films.为了评估提取的介电函数的一致性,我们比较了从紫外线中这些介电功能到近红外波长的折射率值与使用光谱椭圆法分别测量的值。为了进一步验证,我们从其提取的Drude振荡器参数中计算出膜的薄片电阻,并与实验值进行了比较。可以扩展这种基于FTIR的折射率测量方法,以测量超过25 µm的波长的薄膜的折射率,这对于设计高效的光子探测器和光子设备非常有用,在中型和远足波长中具有增强的光学吸收。
在此期间,实用工作通常在物理课程中使用,以使学生参与积极的学习和观察过程[3]。量子光学实验的问题是,由于它们的复杂性很高,对光学调整的敏感性,它们很难在教室中部署,并且由于使用电光系统和激光器而可能构成安全问题。它们通常非常昂贵,并在远离教室的“研究”环境中部署。在实验会话中,学生的操作通常仅限于对光学组装的选定部分进行微调以减轻任务的复杂性。实验的一般图片通常会丢失,因为学生仅尝试整个现象的一小部分。此外,在实际安装中,电源电缆和信号的多样性以及所有混乱视觉空间的测量/控制仪器都会破坏对要掌握的基本概念的整体理解。
挤压的光态对于在计量和信息处理中出现量子技术至关重要。CHIP集成光子学为可扩展有效的挤压光发电提供了一条途径,但是,寄生非线性过程和光学损失仍然是重大挑战。在这里,我们通过DE-DUTAINE DUAL-PUMP自发的四波混合物在光子晶体微孔子中进行了单模正交挤压。在可扩展的低损坏硅硝化光子芯片平台中实现,微孔子具有量身定制的纳米溶解,可调节其共鸣以抑制寄生非线性过程。以这种方式,我们在BUS波导中估计有7.8 dB的芯片挤压,并有可能进一步改进。这些恢复为通向量子增强的量化测定法,高斯玻色子采样,连贯的Ising机器和通用量子计算的综合挤压光源打开了有希望的途径。
摘要。直接对地球系外行星的直接成像是下一代地面望远镜最突出的科学驱动因素之一。通常,类似地球的系外行星位于与宿主恒星的小角度分离,这使得它们的检测变得困难。因此,必须仔细设计自适应光学(AO)系统的控制算法,以将外部行星与宿主恒星产生的残留光区分开。基于数据驱动的控制方法,例如增强学习(RL),可以改善AO控制的有希望的研究途径。rl是机器学习研究领域的一个活跃分支,其中通过与环境的互动来学习对系统的控制。因此,RL可以看作是AO控制的一种自动方法,在该方法中,其使用完全是交钥匙操作。特别是,已显示基于模型的RL可以应对时间和错误注册错误。同样,它已被证明可以适应非线性波前传感,同时有效地训练和执行。在这项工作中,我们在ESO总部的基于GPU的高阶自适应光学测试台(Ghost)测试台上实施并调整了称为AO(PO4AO)的策略优化的RL方法,在实验室环境中我们证明了该方法的强劲性能。我们的实施允许平行执行训练,这对于天上的操作至关重要。,我们研究了该方法的预测性和自我校准方面。我们为实施开放量有据可查的代码,并指定RTC管道的要求。除了硬件,管道和Python接口潜伏期外,还仅引入了幽灵运行Pytorch的新实现。我们还讨论了该方法的重要超参数以及它们如何影响该方法。此外,本文讨论了潜伏期的潜伏期的来源以及较低潜伏期实现的可能路径。
在近几十年内,可编程光子学领域已经显着提高,这是对复杂应用的不断增长的驱动,例如光量子计算和光子神经网络。但是,随着这些应用的复杂性的增加,对新型设计的需求越来越多,可以增强电路传输并实现进一步的微型化。光子波导阵列(WAS)在集成光子学中占有独特的位置,因为它们实现了“始终”哈密顿量,并且在自由空间光学方面没有直接的类似物。他们在各个领域找到了应用,包括光传播研究,量子步行和拓扑光子学。尽管具有多功能性,但缺乏可重构性限制了其实用性,并在很长一段时间内阻碍了进一步的进步。最近,可编程的波导阵列(PWA)已成为克服静态WAS的局限性的有前途的解决方案,并且已证明基于PWA的架构已被证明是通用的。这种观点提出了基于PWA的光子电路的愿景,作为一个新的跨学科领域。我们回顾了PWA的发展历史,并概述了它们在模拟,沟通,传感以及经典和量子信息处理等领域的潜力。这项技术有望随着可编程光子学,纳米制作和量子控制的进步而变得越来越可行。
1个大学。Lille, CNRS, Centrale Lille, UMR 9189-Cristal-Center for Research in Computer Science, Signal and Automatic, F-59000 Lille, France 2 University Paris-Saclay, CNRS, CEA, Institut de Physique Th´Eorerique, 91191, Gif-sur-Yvette, France 3 Univ Lyon, Ens de Lyon, University Claude Bernard Lyon 1, CNRS De Physique(UMR 5672),F-69342 Lyon,法国4 Qube Research and Technologies,75008 Paris,France 5 Univ。Lille,CNRS,UMR 8523-Phlam-phlam-lasers,Atoms and Mol´écules,F-59000 Lille,法国6号ALTO大学应用物理系,00076 AALTO,AALTO,芬兰7 Sorbonne University 7 Sorbonne University 7 Sorbonne University,理论实验室和高级Enigh Enightoration and High Enigh Encorgies,cnres and High Enighs umr 7559999999999。 Jussieu,Tour 13,5eme’iTage,75252 Paris 05,法国8大学。巴黎 - 萨克莱,CNRS,Optique Institute研究生院