摘要 神经退行性疾病 (NDD) 是一组以神经细胞退化为特征的疾病,包括阿尔茨海默病、帕金森病和亨廷顿病。当前的研究依赖于动物模型和二维细胞培养,限制了疾病的准确复制。然而,源自干细胞的 3D 神经类器官为 NDD 研究提供了令人兴奋的前景。神经类器官与正在发育的人类大脑非常相似,已成为疾病建模和药物筛选的宝贵工具。它们可以分化成特定的神经细胞类型并模拟疾病特异性蛋白质聚集。脑类器官改进了药物筛选,评估了药物对神经活动和 BBB 通透性的影响。挑战包括可重复性、血管化和小胶质细胞掺入。尽管如此,神经类器官代表了 NDD 研究的革命性方法,提供了生理相关模型。随着技术的进步,神经类器官在理解和发现神经退行性疾病药物方面具有巨大的前景。关键词:3D 细胞培养、脑类器官、阿尔茨海默病、帕金森病。
1广东省人民医院(广东医学科学院)南部医科大学,广东心血管研究所,510100广东,中国广东,吉朗,医学研究所,医学研究所(Guang guang),医学研究所(Guang)科学),南部医科大学,510080年,中国广东,3广州心脏发病机理和预防的主要实验室,广东省人民医院(广东医学科学院医学科学院),南方医科大学,510080,510080年,南方医学院,吉朗,南部,吉朗,吉朗。 Jishou大学医学院,中国416000 Jishou *通信:lige@gdph.org.cn(ge li); zhuping@gdph.org.cn(ping Zhu)†这些作者贡献了同样的贡献。
1965 年,英特尔联合创始人戈登·E·摩尔 (Gordon E. Moore) 发现,单个微芯片上的晶体管数量大约每两年翻一番,而计算机成本在此期间大约下降一半;这被称为“摩尔定律”。计算能力的提升是第四次工业革命及其推动的所有社会变革的基石。尽管逻辑告诉我们多年来我们已经接近物理尺寸的极限,但工程师们仍在继续寻找看似不可能的方法将更多的晶体管封装到芯片上。科学和社会如何才能延续这些令人欣喜的进步浪潮?也许生物学可以提供解决方案。从一开始,计算机就是为模拟人脑而设计的。数学家约翰·冯·诺依曼是计算机时代的先驱。他未完成的著作《计算机与大脑》于 1958 年首次出版,讨论了当时的大脑和计算机之间的重要区别,并提出了未来研究的方向。这极大地影响了一代又一代创新者的努力,他们让计算机越来越像大脑。在他们引人入胜的文章中,Smirnova 等人 (1) 现在建议做完全相反的事情:让大脑培养更像计算机。2022 年 6 月,美国能源部橡树岭国家实验室的惠普企业前沿 (OLCF-5) 超级计算机超过了单个人脑的估计计算能力 (1 exaFLOPS)。然而,效率却存在巨大差异:人脑重约 1.4 公斤,功耗为 20 W,而企业前沿占用 680 平方米
自2013年脑器官成立以来,有关该主题的研究和讨论成倍增长。他们概括人脑解剖和功能特征的能力引起了全球兴趣。在2013年至2022年之间,平均每月发表了10篇以上文章(1826),其中1/3超过1/3不是原始研究,而是评论(587,Source PubMed)。科学家将脑器官剥削为基础研究,毒性和药物测试的脑模拟工具,并考虑了其潜在的发音和意识。虽然尚未检测到这些脑官的争论特征,但对当前可能的高级应用程序的猜测是令人兴奋的前景。Smionerova等。(1)就其计算和认知能力以及功耗非常低的作用而言,为人脑的至高无上提出了令人信服的案例。将这些参数与最佳计算机进行比较,这些计算机已知具有实质性的碳足迹。他们还为利用脑器官作为生物计算的下一代机械而提出了令人信服的论点。由于这些3D构造可能是人脑的一部分,因此他们认为,与我们的大脑一样,与众不同的不同构造可能会像我们的大脑一样有效。因此,设想了一项跨学科研究计划用于利用–
本综述提供了两种主要类型器官之间的全面比较:诱导多能干细胞(IPSC)衍生的和成人干细胞(ASC)衍生(也称为患者衍生的器官,PDOS)。IPSC衍生的类器官,源自重编程的细胞,表现出显着的可塑性,可以建模各种组织和发育阶段。它们对于研究早期人类发展,遗传疾病和复杂疾病特别有价值。但是,诸如延长分化方案和成熟水平的可变性之类的挑战仍然是重大障碍。相比之下,直接由患者组织产生的ASC衍生的类器官,忠实地概括了组织特异性的特异性和疾病表型。这种保真度使它们对于个性化医学应用必不可少,包括药物筛查,疾病建模和理解个性化的治疗反应。
人类大脑特有的回旋形状最早出现在埃德温·史密斯纸莎草书中,这是一份可追溯到公元前 1700 年的埃及手稿,其中将大脑回旋与熔融金属中的波纹或皱纹进行了比较 [1]。自 19 世纪初以来,这些回旋的描述、发展和功能也一直是研究的主要课题 [2]。回旋的可见上部称为脑回,其深沟称为脑沟。从几何学上讲,回旋增加了给定体积的大脑的表面积。从功能角度来看,它们被认为具有增加皮质内神经元体数量和促进神经元之间连接从而减少电信号在不同区域之间传输时间的战略功能。尽管人们提出了不同的解释,但脑回形成背后的机制尚未完全了解。现在人们普遍认为,人类大脑折叠的出现是内在的机械力而不是外部约束[3]。最近的观察性研究[4,5]进一步支持了皮质在发育过程中快速切向扩张是折叠的主要驱动力[2,6-9]。 44 从最简单的物理层面上讲,折叠的开始可以理解为压缩的上皮层中弹性能量的初始积累,以及薄膜和基底的褶皱变形部分释放。实验中,这种不稳定性可以在与弹性盘结合的圆形壳的受限聚合物膨胀中观察到,这引发了相同类型的褶皱模式[10-14]。在由具有不同膨胀特性的聚合物凝胶制成的双层大脑原型52上进行的类似实验53再现了与真实大脑的脑回和脑沟相似的褶皱54[15]。55
精准肿瘤学中患者来源的类器官——走向个体科学?Sara Green 1,2、Mie Seest Dam 2 和 Mette Nordahl Svendsen 2 摘要 科学哲学中的一个有趣问题是,通过个性化医疗的新技术和实践,“个体”在科学和社会上是如何构成的。一种更好地解释患者差异的新方法是根据来自个体癌症患者的肿瘤样本开发所谓的肿瘤类器官。鉴于其能够重现肿瘤异质性,患者来源的模型被认为是医学中“个体科学”或“单一患者范式”的突破性进展。但是,体外模型在多大程度上有可能——并且可取——成为患者或患者类型的“替代品”?为了探讨这些问题,我们结合了实验室研究和临床研究实践的哲学和人种学分析。我们分析了关于类器官证据状态的认识论不确定性与关于癌症本身性质的本体论不确定性之间的关系,并记录了确定个性化医疗中何种程度的变化具有科学和临床意义的挑战。此外,我们展示了当尝试使用肿瘤类器官进行针对特定患者的药物筛选时,认识论和伦理影响是如何交叉的。在这种背景下,研究人员和临床医生在患者的希望和认识论的不确定性之间陷入困境。 关键词:个性化医疗;精准肿瘤学;肿瘤类器官;肿瘤异质性;患者来源的模型 1. 简介 个性化医疗提出了一些有趣的哲学问题,即在疾病类别变得高度分层的背景下,什么才算是好的转化模型和适当的证据。我们在此关注精准肿瘤学,该领域被誉为个性化或精准医疗中最先进的领域(Plutynski,本卷)3。在这种背景下,目前正在开发个性化模型,试图解释个体患者肿瘤的遗传异质性。本章重点介绍所谓的肿瘤类器官,即从个体患者的肿瘤样本中开发出来的 3D 培养物。我们探讨了在实验室研究和临床实践中如何看待和协商类器官的转化潜力,并讨论了有关类器官表征状态的认知不确定性如何与患者护理的伦理考虑相交叉。
摘要。用于形成人造器官和类器官的生物材料的技术发展表明生物医学工程和再生医学领域的革命区域。这项研究对生物材料的最新进展进行了深入的评论,强调了它们的设计和用于制造人造器官和器官的设计。进行分析以检查模拟局部组织的生物学和生物力学品质的生物材料的必要参数。下一步的努力将变成合成和表征创新的生物材料,包括生物相容性聚合物,水凝胶和生物活性支架,可定制以适合特定器官系统。本文对3D生物印刷和微加工技术的发展提供了深入的看法,强调了它们如何促进复杂的多细胞结构的合成。研究还研究了与干细胞技术结合使用生物材料的整合,重点是它们在形成器官中的作用以及定制医疗治疗的前景。本评论强调了该领域取得的重大发展以及这些技术在解决器官供应有限,进行药物测试以及改善对器官和疾病生长的知识方面的潜力。
与肥胖相关的代谢疾病,包括肥胖,糖尿病,高脂血症和非酒精性脂肪肝疾病,对健康构成了重大威胁。然而,人类模型的可用性有限阻碍了全面的发病机理探索和有效的治疗发展。值得注意的是,器官技术的进步使脂肪器官的产生能够概括人类脂肪组织的结构和功能,以研究机制并开发相应的肥胖相关代谢疾病的治疗方法。在这里,我们回顾了工程脂肪器官的一般原则,来源和三维技术,以及促进成熟的策略。我们还概述了白脂肪器官的应用,主要用于疾病建模和药物筛查,并突出了热米色和棕色脂肪器官在促进体重减轻,葡萄糖以及脂质代谢稳态中的治疗潜力。我们还讨论了脂肪器官的建立和卧铺的挑战和前景,以及它们的潜在应用。
• 使用 2D 类器官单层研究 IBD 病理生理学不同阶段中上皮与微生物群 (B) 和 LP 细胞 (C) 的直接或间接(例如分泌介质)相互作用的影响(图 2、3 和 4)