胃食管癌是癌症死亡的主要原因。尽管我们开始识别特定的可靶向基因突变和途径,但我们采用基于分子的治疗方法的尝试进展缓慢且无效。显然,我们不应再将所有胃食管癌视为同质性疾病,而这正是我们使用非特异性化疗时所做的。然而,我们目前无法监测成功的基因/途径靶向,也无法了解肿瘤如何/何时产生耐药性,也无法预测哪些患者将获得最大益处。为了改善结果,我们必须精确地详细描述这些肿瘤的异质性,然后个性化癌症治疗,并开发新途径来研究和预测个体患者的治疗效果。为此,患者衍生的类器官(其中来自个体患者的肿瘤细胞在培养皿中生长)是一种新的多功能系统,可及时扩展、详细分子表征和基因操作,并有望实现对治疗反应的预测性评估。在这篇综述中,我们将探索类器官生成的发展和基本技术,并讨论这项激动人心的技术在研究致癌基础科学和预测/指导临床癌症患者护理中的当前和未来潜在应用。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年7月26日。; https://doi.org/10.1101/2024.03.25.586638 doi:biorxiv Preprint
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年3月13日发布。 https://doi.org/10.1101/2024.03.11.584506 doi:Biorxiv Preprint
3D生物打印技术的开发为替代器官或组织的替代和药物测试模型的开发提供了新的方向。在不同的印刷支架中测试细胞粘附,增殖和分化,用于创建功能性3D生物印刷结构,这可能是建立针对神经退行性疾病的患者特异性体外模型的可能性。本论文旨在通过探索影响细胞粘附,不同水凝胶和合适的印刷条件的因素来建立3D生物印刷的脊髓模型,以进行ALS的药物研究。在论文I中,我们比较了BC的粘附和细胞存活率在具有不同刚度和不同的化学覆盖的支架的表面上取消了尺寸,并发现了物理和化学因子对细胞粘附,增殖和通过比较的差异的影响,可以用作探索3D打印物与内部细胞混合的条件的参考。在论文II中,选择了基于明胶的水凝胶作为打印脚手架的主要材料。通过以不同浓度的交叉链链链接的不同浓度的明胶测试BC的存活率,我们选择了一种适合细胞活力,细胞分化和生物明显性的方案。不幸的是,当将该方案应用于HIPSC时,它可以在打印后获得细胞的活力,但是仅在脚手架表面观察到细胞分化,因为印刷结构中间的细胞缺乏与周围培养基的接触。论文III表明,BCS吸引了来自其共同培养的3D打印支架中主动脉环的内皮细胞,并指导了内皮细胞的迁移方向。同样,在损伤DRTZ处植入后,他们通过增加血管体积和血管直径来帮助血管化。在论文IV中,我们通过降低明胶的浓度并添加带有cintrofin和gliafin的MSP来改善纸张衍生的MN的纸张II方案。测试了两种可以在培养过程中保留印刷结构的可打印方法,并根据生物INK制备期间的细胞活力选择了一种可以进一步打印。较低的明胶浓度有助于更好地进入周围的培养基,并在支架内实现运动神经元的分化。
简单总结:肺癌很难治愈,尤其是当它已经扩散到身体的其他部位时。延迟确定有效疗法的主要原因之一是肺癌细胞的复杂性,不同患者的肺癌细胞可能有很大差异。类器官是由肺癌产生的肿瘤细胞的小聚集体,用于癌症研究实验室研究肿瘤细胞的特征。类器官具有独特的性质,因为它们可以重现每个特定患者肿瘤的许多特征。由于类器官能够在实验室环境中重现个体肿瘤特征,因此是研究肺癌和确定功能性疗法的绝佳系统。本综述总结了研究人员在肺癌类器官领域遇到的挑战,并描述了类器官技术的进步如何为肺癌患者开发个性化疗法。
* 通讯作者 三维 (3D) 培养方法的进步已导致类器官的产生,这些类器官重现了人类神经系统各个领域的细胞和生理特征。尽管已经开发出微电极用于与神经组织建立长期电生理接口,但对微电极和自由漂浮类器官之间长期接口的研究仍然有限。在本研究中,我们报告了一种可拉伸的柔软网状电极系统,该系统在 3D 类器官中建立了与人类神经元的密切体外电接口。我们的网状电极由基于聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐 (PEDOT:PSS) 的导电水凝胶电极阵列和弹性体聚(苯乙烯-乙烯-丁二烯-苯乙烯) (SEBS) 作为基材和封装材料构成。这种网状电极可以在 50% 压缩应变和 50% 拉伸应变下的缓冲溶液中保持稳定的电化学阻抗。我们已成功在这种聚合物网上培养了多能干细胞衍生的人类皮质类器官 (hCO) 超过 3 个月,并证明类器官很容易与网状物整合。通过同时进行刺激和钙成像,我们表明通过网状电刺激可以引发强度依赖性钙信号,与双极立体电极的刺激相当。该平台可用作监测和调节神经精神疾病体外模型电活动的工具。简介网状电极是一种新兴的脑组织慢性电生理接口平台 1,2 。与由硅等硬质材料制成的传统多电极阵列或柄探针不同,网状电极由柔性导电互连线和绝缘聚合物材料封装的电极组成。由于多种原因,网状电极已被证明能够实现稳定的长期接口。首先是它们的弯曲刚度低:通过具有薄层,它们可能更容易与神经组织贴合,从而最大程度地减少异物相互作用 3 。其次,网状电极排除的体积远小于其他技术(例如实心电极插入物)。网状电极可以做得小于 1 微米,并且已被证明在注入液体溶液后会膨胀和扭开 4,5 。网状电极的一个潜在应用领域是刺激和监测 3D 神经类器官中电活动的出现。神经类器官最初是人类诱导多能干细胞 (hiPSC) 的 3D 聚集体。随着时间的推移,hiPSC 衍生的分化细胞自组织成 3D 结构,重现发育神经轴域的某些方面 6 。这些类器官或它们的组合形成组装体,可用于研究早期
背景:膀胱癌是全球十大最常见肿瘤类型之一,是日益严重的医疗保健问题,占医疗保健总成本的很大一部分。化疗对部分患者有效,但会导致严重的副作用。肿瘤发病机制和耐药机制在很大程度上尚不清楚。精准医疗在膀胱癌领域失败了,因为膀胱肿瘤在基因和分子上非常异质性。目前,治疗决策取决于对手术获得的单个肿瘤组织的评估。目标:膀胱癌的新型临床前模型系统对于制定针对个体患者和肿瘤特征的治疗策略是必不可少的。类器官是小型 3D 组织培养物,可“在培养皿中”模拟小尺寸器官,而类肿瘤是一种特殊类型的癌症类器官(即恶性组织)。材料和方法:自 2016 年以来,我们一直与著名的 Hubrecht 研究所合作,提供模仿亲本肿瘤的组织型膀胱类肿瘤的概念验证。我们开发了一个活体生物库,其中包含从 50 多个患者样本中培养的膀胱类器官和肿瘤类,这些肿瘤类反映了膀胱癌发病机制的关键方面。结果:组织学和免疫荧光分析表明,肿瘤类的异质性和亚分类与相应的亲本肿瘤样本相似。因此,尿路上皮肿瘤类模仿了膀胱癌发病机制的关键方面。结论:尿路上皮肿瘤类的研究将为膀胱癌发病机制和耐药性研究以及精准医疗方法开辟新途径。
摘要。大声液体提供了一种独特的手段来操纵细胞和液体,以在生物医学科学和转化医学中进行广泛应用。但是,由于多种因素,包括设备对设备变化,手动操作,环境因素,样本变异性等因素,标准化并保持当前流动性设备和系统的出色性能是一项挑战。在这里,为了应对这些挑战,我们提出了“智能的Acoustofluidics” - 一种自动化系统,涉及Acoustofluidic设备设计,传感器融合和智能控制器集成。作为一种概念证明,我们开发了基于人类脑器官培养物的基于智能的大量流体分解器。我们的迷你比较反应器由三个组成部分组成:(1)通过声学螺旋相位涡流方法进行无接触式旋转操作的转子,(2)用于实时跟踪旋转动作的摄像机,以及(3)基于增强学习的基于增强的学习控制器,用于旋转操纵的闭环调节。在训练基于增强学习的控制器和实验环境中,我们的迷你比率可以实现良好板中转子的自动旋转。重要的是,无论转子重量,液体体积和工作温度的波动如何,我们的迷你比较反应器都可以对转子的旋转模式,方向和速度进行良好的控制。此外,我们证明了我们的迷你比较反应器可以在长期培养过程中稳定地保持脑官的旋转速度,并增强脑官的神经分化和均匀性。与当前的Acoustofluidics进行了比较,我们的智能系统在自动化,鲁棒性和准确性方面具有出色的性能,突出了新型智能系统在生物电子学和微功能实验中的潜力。
我们发现 [我们的供应商之间] 存在大量批次差异,这给标准化带来了挑战——我们资源最密集的流程涉及类器官的生产”(默克研发科学家)
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年4月10日发布。 https://doi.org/10.1101/2024.04.05.588241 doi:Biorxiv Preprint