• Title: RF Microelectronics • Author: Behazad Razavi • Publication date and edition: Prentice Hall, 2012 Second Edition • ISBN number: ISDN 0-13-713473-8 Course Schedule Prof. Eisenstadt will deliver all the online lectures except for supplemental RF and ADS design lectures and recital lectures by Supervised Teaching Student Chin-Wei Chang.第1周:RF电子设备,现代CMOS MOS晶体管,简单的MOS放大器(Razavi第1章,讲义)第2周:MOS模拟构件和放大器电路(Razavi 2.1,antouts,Dentouts,ankertouts,ankernouts)第3周:基本RF概念,基本的RF Circulity,RF Circultion,Razavi 2.2,Razavi 2.2,4.3周四,RF Circultion,razavi consement,razavi 2.1,anthouts)。 2.3) Week 5: S-parameters, s-parameter examples, Dynamic Range (Razavi, 2.4, 2.6,) Week 6: Sensitivity and Dynamic Range, Analog Modulation, Digital Modulation (Razavi 3.2, 3.3) Week 7: Basic Heterodyne Receivers, Modern Receivers, Exam 1 (Razavi 4.1, 4.2) Week 8: Modern Receivers, Basic RF Filter Analysis, RF Series to Parallel (Basic Matching Networks) (Razavi 4.3, 2.5, handouts) Week 9: LNA Considerations, LNA Topologies, LNA Design CS and CG, ADS Design Project Assigned to Students (Razavi 5.1, 5.2, 5.3)) Week 10: LNA Design CS and CG, Capacitive Transformer, MOS Time Constant Circuits (Razavi 5.3, handouts) Week 11: Passive RF Circuits, RF Spiral Inductors,螺旋感应器计算,考试II(Razavi,7.1,7.2)第12周:RF电感器变量,振荡器基础知识,(Razavi,7.3,7.4,8.1)第13周:振荡器设计,RF振荡器(Razavi,Razavi,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2),振荡器,示波器,示波器,示波器,振荡器,示波器,示波器,示波器,振荡度为被动和主动的示例混音器问题,设计项目(Razavi,6.2,6.3)
QuickSyn Lite mmW 合成器模块使用安装在标准 20 GHz QuickSyn Lite 顶部的频率倍增器模块,将频率范围扩展到 mmW 频率。新模块由 Quickyn Lite 基座供电和控制,使用户可以轻松集成和控制。与所有 Quicksyn 合成器一样,这些新的 mmW 源包括串行 SPI 和 USB 控制接口,只需将它们连接到 PC 和直流电源即可立即部署。软前面板允许用户访问频率控制和频率扫描以及 32K 点 LIST 模式设置。此外,嵌入式固件允许将这些模块用作集成自动测试解决方案的一部分。我们已采取措施尽量减少次谐波和杂散。除了在频率转换器应用中用作本地振荡器外,QuickSyn Lite mmW 模块还可以
极限周期振荡器之间的同步可以通过夹带到外部驱动器或通过相互耦合而产生。在经典同步系统中研究了两种机制之间的相互作用,但在量子系统中没有研究。在这里,我们指出,由于量子系统中的相位拉力和相位排斥,这两种机制之间的竞争与合作可能发生。我们在集体驱动的简并量子热机器中研究它们的相互作用,并表明这些机制可以根据机器的工作方式(冰箱或发动机)进行配合或竞争。夹带 - 单位同步相互作用持续存在,退化水平的数量增加,而在退化的热力学极限中,相互同步主导。总体而言,我们的工作研究了量子同步的退化和多级缩放的效果,并显示了不同的同步机制如何在量子系统中进行合作和竞争。
我们通过实验证明,使用幺正压缩协议可以增强(放大)涉及量子谐振子的一大类相互作用。虽然我们的演示使用了单个被捕获的 25 Mg + 离子的运动状态和内部状态,但该方案通常适用于仅涉及单个谐振子的汉密尔顿量以及将振荡器与另一个量子自由度(如量子比特)耦合的汉密尔顿量,涵盖了量子信息和计量应用中大量感兴趣的系统。重要的是,该协议不需要了解要放大的汉密尔顿量的参数,也不需要压缩相互作用与系统动力学其余部分之间有明确的相位关系,这使得它在信号或相互作用的某些方面可能未知或不受控制的情况下非常有用,例如寻找新形式的暗物质。
09:00 – 09:25 利用电场研究超导量子比特中的缺陷 Jürgen Lisenfeld,卡尔斯鲁厄理工学院 09:25 – 09:50 我们能否进一步减少超导量子振荡器中的耗散和失相? Ioan M. Pop,卡尔斯鲁厄理工学院 09:50 – 10:15 声子阱可降低超导电路中非平衡准粒子的密度 Francesco Valenti,卡尔斯鲁厄理工学院 10:15 – 10:20 参观 PTB 实验室的一些细节 10:20 – 10:50 咖啡休息 10:50 – 11:15 紧凑型 3D 量子存储器的最佳控制 Frank Deppe,加兴理工大学 / 慕尼黑理工大学和 MCQST 大学 11:15 – 11:40 三波混频行波约瑟夫森参量放大器的开发挑战 Christoph Kissling,不伦瑞克 PTB
09:00 – 09:25 利用电场研究超导量子比特中的缺陷 Jürgen Lisenfeld,卡尔斯鲁厄理工学院 09:25 – 09:50 我们能否进一步减少超导量子振荡器中的耗散和失相? Ioan M. Pop,卡尔斯鲁厄理工学院 09:50 – 10:15 声子阱可降低超导电路中非平衡准粒子的密度 Francesco Valenti,卡尔斯鲁厄理工学院 10:15 – 10:20 参观 PTB 实验室的一些细节 10:20 – 10:50 咖啡休息 10:50 – 11:15 紧凑型 3D 量子存储器的最佳控制 Frank Deppe,加兴理工大学 / 慕尼黑理工大学和 MCQST 大学 11:15 – 11:40 三波混频行波约瑟夫森参量放大器的开发挑战 Christoph Kissling,不伦瑞克 PTB
抽象离散(DTC)和连续的时间晶体(CTC)是新型的动力多体状态,其特征在于稳健的SELSELRIST持续振荡,通过自发破坏ODiscrete或连续的时间翻译而出现。dtc是定期驱动的系统,可振荡于次谐波的外部驱动器,而CTC则是连续驱动和振荡的,并具有与系统固有的频率。在这里,我们探索了一个相变的连续时间晶体到离散的时间晶体。具有特征性振荡的CTC在连续泵送的原子腔系统中制备了频率ωCTC。将泵强度调节ctc的泵强度接近2ΩCTC的CTC导致可靠的锁定OΩCTC锁定至ωDR2,因此DTC出现了。量子多体系统中的这种相变与谐波注射锁定的锁定锁定力和电子振荡器或激光器有关。
背部动作是指在系统上恢复行动以根据外部刺激来量身定制其性质的响应。这种效果是许多电子设备(例如放大器,振荡器和传感器)的核心。在这里,我们证明可以利用反作用来实现超导电路中的非转录运输。在我们的设备中,无耗散电流向一个方向流动,而耗散运输则朝相反的方向出现。超电流二极管依靠磁元素或涡流来介导电荷传输或外部磁场以打破时间反转对称性。反作用仅将传统的倒数超导链连接转动,而当前偏置方向之间没有不对称的弱环节变成整流器,其中临界电流振幅取决于偏置符号。超流动的自我交流源于金属和半导体系统中临界电流的栅极可调性,该系统促进了具有可选极性的几乎理想的无磁场整流。