我们报告了CO – P - O纳米颗粒(NPS)的简单制造方法,通过电镀碳布支架上的纳米颗粒(NP)。co - p - o在水电解中表现出异常的双功能催化性催化性,由于中间体的优化吸附能以及钴金属纳米颗粒的出色导电性,同时产生氢(H 2)和氧(O 2)气体。CO - P - O分别以190 mV和280 mV的氢进化反应(HE)和氧气进化反应(OER)达到10 mA/cm 2的几何电流,而其连续的催化纳米粒子在碳纤维上确保具有微小电阻的高电荷运输。观察到,co – p - o电极的性能远远超过了碳布的性能,接近由贵族电催化剂PT/C和RUO 2设置的基准测试。使用CO - P - O电极基于两电池电池的碱性电解器,在1.64 V时表现出双功能水分,在1.64 V和1.98 V时,在10和100 mA/cm 2时。此外,碱性电解剂在50 mA/cm 2的电流密度下表现出稳定的电催化活性。
可充电锌空气电池(ZABS)被认为是在便携式电子,电动汽车和电化学能源存储技术中最有前途的候选者之一,因为它们的高能量密度,环境友好,低成本和出色的安全性。1特殊的高能量密度归因于图1 A所示的无限氧气量,而能量仅受金属Zn(820 a H kg -1)的限制。然而,实际使用Zn-Air电池会面临几个问题,包括实际容量低,能源效率差和循环稳定性不足。一方面,Zn电极在操作过程中引起了一系列挑战,包括钝化,树突和氢的演化,这导致了较低的Zn利用率和较差的循环稳定性。另一方面,空气电极上的催化剂对氧气的电化学反应的催化活性不足,这直接导致高电势和低能效率(〜60%,排放:〜1.2 V,电荷,电荷:〜2.0 V)。2因此,最近的研究强调了两个关键领域:Zn电极的复杂工程以及用于氧还原反应(ORR)和氧气演化反应(OER)的贵族无金属双功能催化剂的发展。3尽管在小型实验室电池系统中展示了令人鼓舞的结果,但将这些进步转移到广泛的实际应用中带来了重大挑战。
摘要:在这项研究中,通过电化学方法制备了装饰的NF底物上的钴型Ni(OH)2。使用扫描电子显微镜(SEM),原子力显微镜(AFM),能量分散光谱(EDS),X射线光电学光谱(XPS)和X射线衍射(XRD(XRD)),使用扫描电子显微镜(AFM),能量分散光谱(EDS),X射线散射光谱(EDS)描述了制备材料的表面特性,粗糙度,化学成分和晶体结构。此外,使用衰减的总反射傅立叶变换红外光谱(ATR-FTIR)和拉曼光谱的光学表征技术用于确认PANI的聚合。结果表明,Pani和双金属氧化物/氢氧化物在Bare NF的平坦骨架上凝聚。在碱性培养基中进行氧气演化反应(OER)的Co-Ni(OH)2 /Pani-NF的电催化性能,并且表现出出色的电催化活性,表现出了出色的电催化活性,其过电势为180 mV@20 MA CM-2,带有Tafel Slope 62 mV dec-2 dec-2。TOF(10-2)值确定为1.58 V时为2.49 s-1,突出了Co-ni(OH)2 / pani-nf在催化OER时的内在活性升高。使用计时度测定法(CA)进行24小时的稳定性测试,以完成100 mA cm -2和循环伏安法(CV),对200个循环(CV)进行200个循环,扫描速率为5 mV s -1。结果表明,即使在暴露于这些条件之后,该材料即使在长期接触这些条件后仍保持其电化学性能和结构完整性。这些发现强调了Co-ni(OH)2 /pani-NF是OER的有效且有前途的电催化材料,有可能通过水电解来提高氢产生的效率。
更广泛的背景是新的负发射技术的发展以及先进的多模式表征和测试方法对于加快可持续未来的建设至关重要。作为一种有希望的下一代负发射技术,锂–Co 2电池(LCB)作为先进的储能设备,由于其独特的使用CO 2作为反应物,因此引起了极大的关注。尽管如此,有效的LCB的发展仍处于其新生阶段,挑战较大,诸如较大的过度势力,低能效率和差的可逆性,这不仅强调了对快速探索高效电催化剂的需求,而且还需要对深度研究进行更深入的研究,以对其潜在的机械性进行更深入的理解。LCB的电催化剂勘探的常规方法主要依赖于试验方法和单峰表征/测试技术,既效率低下又耗时。因此,建立一个流线型的材料属性测试平台,该平台允许快速催化剂筛选和多模式表征,并具有出色的时间和纳米级空间分辨率,这对于实现了这项新兴技术的更全面的理解,知情的决策和最佳设计至关重要。预计该多模式平台的实施将实质上解锁新的前景,用于快速催化剂筛查,机制调查和实际应用,涵盖从纳米科学和技术到最先进的负面发射技术(LCBS和其他电动促进系统)。在这项工作中,我们开发了一个开创性的多式模式实验室电化学测试平台,以同时实现有效的催化剂筛选(确定性电催化源评估和操作条件优化),并集成了对2转化率的现场探测2 COCONION EXTROCHEMISTION(FORCBERTISTION ANAPECTION ANAPECTION ANAPECTION ANAPECTION ANTICE COMPATION,FORDSENBERTIDER,FORDBESTERS和MARPHONTIFER)。
20 摘要 21 Al-CO 2 电池是一种非常有前途的锂离子电池替代品,它有潜力提高电池容量和性能,但尚未证明其具有高电位和高容量可充电性。在这项工作中,我们将碘化铝引入以前仅有一次的 Al-CO 2 电池配置中,作为均质氧化还原介质。这使电池能够以 0.05 V 的超低过电位充电,而不会牺牲高放电电位和比容量 27 ,分别为 1.12 V 和 3,557 mAh/g 碳。我们使用铝-27 核磁共振确定电池的放电产物为草酸铝。29 可充电的 Al-CO 2 电池可以作为锂离子电池的廉价、高容量替代能源存储设备,同时捕获和浓缩二氧化碳。 31 32 预告 33 在 Al-CO 2 电池中引入 AlI 3 可增强放电,并能够以超低过电位循环电池。 35 36 正文 37 38 简介 39 缓解温室气体引起的全球变暖的一种策略是将以前基于化石燃料的技术(如汽车)电气化。(1)这一努力取得了一定的成功,这主要归功于锂离子电池技术的发展。然而,锂离子电池的理论上限明显低于化石燃料的能量存储容量,这实际上限制了电气替代品的成功应用。(2,3)需要一种具有更高能量存储容量的新型电池配置,其中包括金属-CO 2 电池。在金属-CO 2 电池中,来自 46
摘要:研究粘稠的甘醇二甲醚溶剂可能有助于寻找安全的电解液以促进锂硫 (Li-S) 电池的应用。因此,本文对使用不易燃的四乙二醇二甲醚添加低粘度 1,3-二氧戊环 (DOL) 的电解液进行了彻底研究,以实现可持续的 Li-S 电池。该电解质的特点是低可燃性、约 200°C 的热稳定性、25°C 时离子电导率超过 10 − 3 S cm − 1、Li + 迁移数约为 0.5、电化学稳定窗口从 0 至约 4.4 V vs Li + /Li,Li 剥离沉积过电位为 ∼ 0.02 V。DOL 含量从 5 wt % 逐渐增加到 15 wt % 会提高 Li + 运动的活化能,降低迁移数,稍微限制阳极稳定性,并降低 Li/电解质电阻。该电解质用于 Li − S 电池,其复合材料由硫和多壁碳纳米管以 90:10 的重量比混合而成,利用了优化的集流体。对阴极的结构、热行为和形貌进行了初步研究,并在使用标准电解质的电池中使用。该电池可进行超过 200 次循环,硫负载增加至 5.2 mg cm − 2,电解质/硫 (E/S) 比降低至 6 μ L mg − 1 。随后将上述硫阴极和基于甘醇二甲醚的电解质组合成安全的 Li − S 电池,其循环寿命和输出容量与研究浓度范围内的 DOL 含量相关。关键词:Li − S 电池、甘醇二甲醚电解质、低可燃性、MWCNT、集电器、E/S 比
抽象响应紧迫的需求,以减轻由于化石燃料消耗而导致的气候变化影响,因此有一个集体推动向可再生和清洁能源过渡。但是,此举的有效性取决于超过当前锂离子电池技术的有效储能系统。与其他系统相比,具有明显高理论特异性容量的锂氧电池已成为有前途的解决方案。然而,在排出产品形成过程中,较差的阴极电极电导率和缓慢动力学的问题限制了其实际应用。在这项工作中,首先基于原理的密度函数理论用于研究β12-硼苯苯苯甲;作为高性能锂氧气电池的阴极电极材料的电催化特性。计算了β12-硼苯锂的吸附能,电荷密度分布,吉布斯自由能的变化以及超氧化锂(LIO 2)的扩散能屏障。我们的发现揭示了一些重要的见解:发现吸附能为-3.70 eV,这表明LIO 2在放电过程中保持固定在材料上的强烈趋势。LIO 2和β12-硼苯基底物之间的电荷密度分布中的动力学表现出复杂的行为。对吉布斯反应的自由能变化的分析产生的过电势为-1.87 V,该中等值表明在排放产物形成期间自发反应。最有趣的是,状态和频带结构分析的密度表明,在LIO 2吸附后,材料的电导率得到了保留,并提高了材料的电导率。此外,β12-硼苯二苯乙烯的扩散能屏障相对较低,为1.08 eV,这意味着LIO 2的毫不费力地扩散,并且放电过程的速率增加。最终,预测的β12-硼烷的电子特性使其成为有效锂氧气电池的阴极电极材料的强大候选者。
通过减少全球CO 2排放来缓解气候变化是一个紧迫而又苛刻的挑战,需要创新的技术解决方案。这项工作受到钒氧化还原流量电池(VRFB)的启发,引入了用于碳捕获和能量存储的集成电化学过程。它利用已建立的钒和铁烯化氧化还原夫妇进行pH调节,以进行CO 2解吸和吸收性再生。发达的过程在白天(可再生电能时)吸收电力,以取消CO 2并为电池充电,并且可以在太阳能不可避免的太阳能时在夜间将电力释放到网格中,以便进一步吸收CO 2吸收。这项研究通过对系统的热力学,运输现象,动力学和台式操作进行广泛研究,探讨了过程的基本原理和可伸缩性潜力。循环伏安法(CV)用于研究该过程的热力学,并绘制氧化还原轮廓以识别理想的潜在操作窗口。CV结果将0.3 V Nernstian Overbipential定位为细胞操作所需的热力学最小值。此外,进行了极化研究以选择实际的工作电位,将0.5 V确定为对CO 2解吸周期的最佳选择,以提供足够的极性以克服激活障碍,此外除了Nernstian势。传质分析平衡电导率和解吸效率,1:1的比例确定为最佳的氧化还原活性物种和背景电解质浓度。为了进一步增强氧化还原反应的动力学,实施了电极表面的血浆处理,从而导致电荷转移耐药性降低了43%,如电化学阻抗光谱(EIS)分析所测量。最后,该系统的台式操作显示了54 kJ/mol CO 2的能耗,这与其他电化学碳捕获技术具有竞争力。除了其能源竞争力外,该过程还提供了多个其他优势,包括消除贵金属电极,烟气中的氧气不敏感性,受VRFB技术启发的可伸缩性以及在吸收性再生过程中充当电池的独特能力,从而实现了有效的日夜操作。
电催化剂,能够在分子水平上精确调节缺陷和可及的活性中心。有趣的是,异质结构体系通常比均匀结构体系表现出更高的催化活性,这归因于电极结构/组成和界面性质的协同效应。[17–21] 在此,我们展示了如何利用 SURMOF 异质结构生长的机会及其独特的变态来产生具有特殊形貌和微观结构的金属氧/羟基材料。在 0.1 m KOH 中 300 mV 的过电位下,我们测得的氧释放质量活性约为 2.90 kA g −1,优于基准贵金属和非贵金属电催化剂。据我们所知,这是报道的 NiFe 基电催化剂的最高质量活性。据报道,SURMOF 可产生对水氧化具有高活性的电催化剂,但 MOF 基催化体系的电化学稳定性或转化以及活性物质的来源仍然不清楚。[22,23] 最近的研究集中于阐明 MOF 基催化体系中的活性物质,并通过一系列先进的物理化学技术发现在电化学测试的 (SUR)MOF 催化剂中存在金属氢氧化物。[24–27] 因此,推测所述活性物质来源于碱性电解质中氧电催化过程中的 MOF 衍生的金属氢氧化物。尽管最近有一些努力致力于阐明催化物质,但对转化机制和结构-性能关系的深入了解仍然是开放的。在这项工作中,我们使用由去质子化的对苯二甲酸 ([TA] 2 − ) 连接体组成的异质结构 NiFe 基 SURMOF,并利用结构和成分的变化来优化 OER 性能。实验表明,异质结构 SURMOF 在碱浸和电化学测量过程中经历了特定的原位重构和自活化过程,从而产生金属氢氧化物和羟基氧化物以及有机连接体的部分浸出。我们建议使用 SURMOF 作为前体,以便访问催化剂制造的参数空间,这超出了现有的合成概念。
电催化剂,并可以在分子水平上进行精确调整缺陷和可访问的活动中心。有趣的是,异质结构系统通常比其均匀结构化的催化活性更高,这归因于电极结构/组成和界面特性的协同作用。[17–21]在本文中,我们证明了既利用了杂质生长的机会及其独特的变形的机会,从而产生了特殊形态和微观疗法的金属氧气/羟基材料。我们在0.1 M KOH中测量了≈2.90ka g -1的记录氧演化质量活性在300 mV的超电势下,优于基准的珍贵和非纯粹的金属电催化剂。据我们所知,这是基于Nife的电催化剂的最高质量活动。SURMOF会产生高度活性的曲催化剂,用于水氧化,但是电化学稳定性或转化以及基于MOF的催化系统中活性物种的起源仍然难以捉摸。[22,23]最近的研究集中于在基于MOF的催化系统中阐明活性物种,并通过一系列先进的物理化学技术在经过电化学测试(SUR)MOF cActalys中发现金属氢氧化物的存在。[24–27]因此,假定所指定的活性物种起源于碱性电解质中的氧电催化过程中MOF衍生的金属氢氧化物。我们建议使用SURMOF作为前体,允许访问催化剂制造的参数空间,这超出了现有的合成概念。尽管最近做了一些致力于阐明催化物种的努力,但对转化机制和结构与绩效关系的深入了解仍然开放。在这项工作中,我们使用由去质子化的terephathalic Acid([TA] 2-)接头组成的异质结构的基于Nife的Suromof,并在结构和组成中利用变体来优化OER性能。实验表明,异性疗法在碱性浸入碱和电化学测量过程中经历了特定的原位重建和自我激活过程,从而导致金属羟基和羟基氧化物以及有机链接者的部分浸出。