定期间隔间隔的短篇小学重复序列(CRISPR)和CRISPR相关蛋白(CAS9)系统是ARCHEA和细菌用于降解异物(4,6)的适应性免疫反应防御机制(4,6)。该机制可以用于其他功能,包括用于哺乳动物系统的基因组工程,例如基因敲除(KO)(KO)(1,2,3,5)。crispr/cas9 ko质粒产物通过利用从基因组尺度CRISPR敲除(Gecko)V2库中得出的指导RNA(GRNA)序列来鉴定和裂解特定基因,该序列在广泛研究所的张实验室中开发的基因组规模CRISPR敲除(Gecko)V2库(3,5)。
定期间隔间隔的短篇小学重复序列(CRISPR)和CRISPR相关蛋白(CAS9)系统是ARCHEA和细菌用于降解异物(4,6)的适应性免疫反应防御机制(4,6)。该机制可以用于其他功能,包括用于哺乳动物系统的基因组工程,例如基因敲除(KO)(KO)(1,2,3,5)。crispr/cas9 ko质粒产物通过利用从基因组尺度CRISPR敲除(Gecko)V2库中得出的指导RNA(GRNA)序列来鉴定和裂解特定基因,该序列在广泛研究所的张实验室中开发的基因组规模CRISPR敲除(Gecko)V2库(3,5)。
成簇的规律间隔短回文重复序列 (CRISPR) 和 CRISPR 相关蛋白 (Cas9) 系统是一种适应性免疫反应防御机制,古细菌和细菌利用该机制降解外来遗传物质 (4,6)。该机制可以重新用于其他功能,包括哺乳动物系统的基因组工程,例如基因敲除 (KO) (1,2,3,5)。CRISPR/Cas9 KO 质粒产品利用来自 Broad 研究所张实验室开发的全基因组 CRISPR 敲除 (GeCKO) v2 库的向导 RNA (gRNA) 序列,能够识别和切割特定基因 (3,5)。
近年来,使用称为CRISPR的系统(群集定期间隔短的静脉体重复序列)为基因组编辑提高了令人难以置信的新可能性,以改善柑橘的改善。crispr用于对柑橘树的DNA序列进行小变化,从而导致特异性靶向突变。abil的重大进展是通过新的基因组序列技术和强大的计算机的选择使包括柑橘在内的任何生物体的遗传蓝图(包括柑橘)成为可能。许多商业上重要的柑橘类型已经或正在测序的过程中。
病原体感染会导致人类和动物出现严重的临床疾病。人与动物接触的增多和环境的不断变化加剧了人畜共患传染病的传播。最近,世界卫生组织已将一些人畜共患流行病宣布为国际关注的突发公共卫生事件。因此,快速准确地检测致病病原体对于对抗新发和再发传染病尤为重要。传统的病原体检测工具耗时、成本高,并且需要熟练的人员,这极大地阻碍了快速诊断测试的发展,特别是在资源受限的地区。基于成簇的规律间隔短回文重复序列 (CRISPR-)-Cas 和适体的平台已经取代了传统的病原体检测方法。本文我们回顾了两种用于临床和食源性病原微生物的新型下一代核心病原体检测平台:基于 CRISPR-Cas 的系统,包括 dCas9、Cas12a/b、Cas13 和 Cas14;以及基于适体的生物传感器检测工具。我们重点介绍了基于 CRISPR-Cas 和适体的技术,并比较了它们的优缺点。基于 CRISPR-Cas 的工具需要繁琐的程序,例如核酸扩增和提取,而基于适体的工具则需要提高灵敏度。我们回顾了 CRISPR-Cas 和适体技术的结合,作为克服这些缺陷的一种有前途的方法。最后,我们讨论了基于 Cas14 的工具作为功能更强大的平台,用于检测非核酸靶标。关键词:成簇的规律间隔的短回文重复序列-Cas、适体、病原体检测、诊断工具
选择性雌激素受体降解剂 回文重复序列 SERM 选择性雌激素受体 CRL Cullin-RING 连接酶调节剂 CSN COP9 信号体 sgRNA 单向导 RNA DCAF DDB1 和 CUL4 相关因子 SMI 小分子抑制剂 DDB1 DNA 损伤结合蛋白 1 SOCS/BC 细胞因子信号抑制剂/DNMT 从头甲基转移酶 elongin-BC DUB 去泛素化酶 SR 底物受体 E1 泛素活化酶 STK 丝氨酸/苏氨酸激酶 E2 泛素结合酶 TPD 靶向蛋白降解 E3 泛素连接酶 UPS 泛素-蛋白酶体系统
摘要:成簇的规律间隔短回文重复序列 (CRISPR) 相关内切酶 9 (CRISPR/Cas9) 基因编辑系统在许多细菌和古菌中发挥免疫抑制作用,具有高效、多样性和模块化等多种优势。它现在被广泛用于提高作物的质量和数量以满足全球粮食需求。尽管这些前景很诱人,但仍需要更深入的了解来提高其效率和安全性。因此,对这一特殊系统的概述非常重要。在这篇综述中,简要介绍了目前对不同类型的 CRISPR/Cas 系统的了解以及它们的机制、在作物育种中的应用和局限性,为未来的利用提供基本理解和指导。
支原体是一种成功的致病菌,可导致人类和各种动物宿主的衰弱性疾病。尽管支原体基因组极其精简,但它们已经进化出特殊的机制来从宿主细胞中获取必需的营养物质。用于操纵支原体基因组的遗传工具的匮乏阻碍了对致病菌种的毒力因子和营养物质获取机制的研究。本文总结了几种编辑支原体基因组的策略,包括同源重组、转座子、成簇的规律间隔短回文重复序列 (CRISPR)/Cas 系统和合成生物学。此外,本文还讨论了不同工具的机制和特点,以期为高效操纵支原体基因组提供参考和未来方向。
成簇的规则间隔回文重复序列被称为 CRISPR。它是一种可以编程来改变、消除或激活基因组的蛋白质。这项尖端技术提供了广泛的实施可能性,并将在未来几年彻底改变口腔保健。最广泛使用的基因组编辑技术包括归巢内切酶、转录激活因子样效应核酸酶、锌指核酸酶和 CRISPR-CRISPR 相关蛋白 9 (Cas9)。这些适应性强的基因组编辑工具可以以序列特异性的方式改变基因组。由于其高效和准确,基因组编辑方法 CRISPR-Cas9 已引起人们的关注,成为抗击癌症的有力武器。本综述介绍了这种方法及其用途,特别是在牙科领域的用途。
Cas9 分子由向导 RNA (gRNA) 引导至目标 DNA。这种短 RNA 片段 (gRNA) 与目标病毒 DNA 序列互补。这种特定的引导系统允许 Cas9 在非常特定的水平上切割 DNA。这种切割过程会破坏病毒。此外,原核生物可以保留并储存一段外来 DNA(称为“间隔物”)。间隔物将保留在 CRISPR 片段的回文序列之间,这允许原核生物保留以前感染的记忆。通过这种方式,病毒的任何再次感染企图都会被迅速阻止,攻击病毒将被摧毁。这基本上相当于人类免疫系统,它获取并保留抗原以防止再次感染。