b'对于最多3个HVS系统与一个混合逆变器的并行连接,“ HV Combiner盒”的使用是组合DC字符串的强制性。Further information you will find here: Datasheet https://www.bydbatterybox.com/uploads/downloads/210423%20Premium%20HVS_HVM%20Com biner%20Box%20V1.3%20EN-6088f0cc8bdf2.pdf & Manual https://www.bydbatterybox.com/uploads/downloads/battery- box%20Premium%20HVS_HVM%20 Combiner%20box%20box%20 installation%20manual%20V1.2-6089298820A21.PDF>
结果:共鉴定出 135 种独特的线粒体 DNA 单倍型,分为 105 个单倍群,单倍型多样性值为 0.9993。整个线粒体基因组的鉴别能力计算为 0.9574,而仅分析控制区时为 0.8936。观察到的大多数单倍群是东亚谱系所特有的,包括 D4、D5 和 F1。人群比较显示,现代山东汉族与来自黄河和西辽河流域的古代人群有遗传联系。此外,山东汉族在其发展过程中可能融合了大量来自其他地区的母系血统。山东汉族的人口扩张估计发生在大约 9,000 年前,相当于新石器时代,这是一个文化和技术发展显著的时期。
迷你启动子在体外比CAG强。(a)使用基于流式细胞术的体外测定法对有希望的迷你启动候选者的活性进行了验证。启动子候选物被克隆在双重孢子质粒中的McLover3上游,该质粒还包含TDTOMATO(RFP)表达盒,该盒被用作内部转染对照。启动子活性被量化为单个活的TDTOMATO+细胞中McLover3和TDTomato的中位荧光强度的比率。(b)使用双报告基因测定法分析,启动子在小鼠N2a和人HuH7细胞中的相对表达。(c)NGS表达(条形码)和独立测定表达(蛋白质荧光)的强相关性表现出对高通量筛选和生物信息学命中选择的预测能力的高信心。
我们证明了3台计算量子量子交互协议与有效的挑战者和有效对手之间的紧密平行重复定理。我们还证明,在合理的假设下,在并行重复下,4台式计算协议的安全性通常不会降低。这些反映了Bellare,Impagliazzo和Naor的经典结果[BIN97]。最后,我们证明所有量子参数系统都可以一致地编译到等效的3-序列参数系统,从而反映了量子证明系统的转换[KW00,KKMV07]。As immediate applications, we show how to derive hardness amplification theorems for quantum bit commitment schemes (answering a question of Yan [ Yan22 ]), EFI pairs (answering a question of Brakerski, Canetti, and Qian [ BCQ23 ]), public-key quantum money schemes (answering a question of Aaronson and Christiano [ AC13 ]), and quantum零知识参数系统。我们还为量子谓词推导了XOR引理[YAO82]作为推论。
1。jao,J.Y。等。微生物暗物质即将到来:挑战和机遇。国家科学评论8(2021)。2。Rinke,C。等。 对微生物暗物质的系统发育和编码潜力的见解。 自然499,431-437(2013)。 3。 Yarza,P。等。 使用16S rRNA基因序列将培养和未培养的细菌和古细菌的分类结合在一起。 自然评论微生物学12,635-645(2014)。 4。 Dykhuizen,D.E。 圣诞老人重新审视:为什么有这么多种细菌? Antonie van Leeuwenhoek国际通用与分子微生物学杂志73,25-33(1998)。 5。 Parte,A.C.,Carbasse,J.S。,Meier-Kolthoff,J.P.,Reimer,L.C。 &Göker,M。具有命名(LPSN)的原核生物名称清单移至DSMZ。 国际系统和进化微生物学杂志70,5607-5612(2020)。 6。 Chaffron,S.,Rehrauer,H.,Pernthaler,J. &von Mering,C。来自环境和全基因组序列数据共存微生物的全局网络。 基因组研究20,947-959(2010)。 7。 QIN,J.J。等。 通过元基因组测序建立的人类肠道微生物基因目录。 自然464,59-70(2010)。 8。 Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。Rinke,C。等。对微生物暗物质的系统发育和编码潜力的见解。自然499,431-437(2013)。3。Yarza,P。等。使用16S rRNA基因序列将培养和未培养的细菌和古细菌的分类结合在一起。自然评论微生物学12,635-645(2014)。4。Dykhuizen,D.E。圣诞老人重新审视:为什么有这么多种细菌?Antonie van Leeuwenhoek国际通用与分子微生物学杂志73,25-33(1998)。5。Parte,A.C.,Carbasse,J.S。,Meier-Kolthoff,J.P.,Reimer,L.C。 &Göker,M。具有命名(LPSN)的原核生物名称清单移至DSMZ。 国际系统和进化微生物学杂志70,5607-5612(2020)。 6。 Chaffron,S.,Rehrauer,H.,Pernthaler,J. &von Mering,C。来自环境和全基因组序列数据共存微生物的全局网络。 基因组研究20,947-959(2010)。 7。 QIN,J.J。等。 通过元基因组测序建立的人类肠道微生物基因目录。 自然464,59-70(2010)。 8。 Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。Parte,A.C.,Carbasse,J.S。,Meier-Kolthoff,J.P.,Reimer,L.C。&Göker,M。具有命名(LPSN)的原核生物名称清单移至DSMZ。国际系统和进化微生物学杂志70,5607-5612(2020)。6。Chaffron,S.,Rehrauer,H.,Pernthaler,J.&von Mering,C。来自环境和全基因组序列数据共存微生物的全局网络。基因组研究20,947-959(2010)。7。QIN,J.J。等。 通过元基因组测序建立的人类肠道微生物基因目录。 自然464,59-70(2010)。 8。 Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。QIN,J.J。等。通过元基因组测序建立的人类肠道微生物基因目录。自然464,59-70(2010)。8。Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。Methé,B.A。等。人类微生物组研究的框架。自然486,215-221(2012)。9。lok,C。挖掘微生物暗物质。10。自然522,270-273(2015)。Medema,M.H。,De Rond,T。&Moore,B.S。 采矿基因组阐明了生命的专业化学。 自然评论遗传学22,553-571(2021)。 11。 Pavlopoulos,G.A。 等。 通过全球宏基因组学解开功能性暗物质。 自然622,594-602(2023)。 12。 Altae-Tran,H。等。 揭示了稀有Terascale聚类的稀有CRISPR-CAS系统的功能多样性。 Science 382,EADI1910(2023)。 13。 Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Medema,M.H。,De Rond,T。&Moore,B.S。采矿基因组阐明了生命的专业化学。自然评论遗传学22,553-571(2021)。11。Pavlopoulos,G.A。等。通过全球宏基因组学解开功能性暗物质。自然622,594-602(2023)。12。Altae-Tran,H。等。 揭示了稀有Terascale聚类的稀有CRISPR-CAS系统的功能多样性。 Science 382,EADI1910(2023)。 13。 Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Altae-Tran,H。等。揭示了稀有Terascale聚类的稀有CRISPR-CAS系统的功能多样性。Science 382,EADI1910(2023)。 13。 Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Science 382,EADI1910(2023)。13。Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Wilkinson,B。&Micklefield,J。采矿和工程自然产品生物合成途径。自然化学生物学3,379-386(2007)。14。Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。天然产品报告40,89-127(2023)。15。Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Goig,G.A。等。直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。柳叶刀微生物1,E175-E183(2020)。16。刘,Y.X。等。微生物组数据的扩增子和宏基因组分析的实用指南。蛋白质和细胞12,315-330(2021)。17。Ustick,L.J。等。宏基因组分析揭示了海洋营养限制的全球规模模式。科学372,287-291(2021)。18。Nissen,J.N。 等。Nissen,J.N。等。使用深层自动编码器改进了元基因组套筒和组装。自然生物技术39,555-560(2021)。
连贯的光学元件对从通信,激光雷达到量子计算的多种应用深远影响。但是,在硬件集成和能量效率方面,在集成光子学中开发一致的系统付出了很大的代价。在这里,我们演示了高级集成相干系统的高稳态并行化策略,成本最低。通过使用自注射锁定的微型尸体对注射锁定反馈激光器,我们获得了创纪录的高芯片上增益60 dB的高位,而连贯性没有降解。此策略使高度连贯的通道可下降至10 Hz,并在20 dBm上进行功率。总体电到光学效率达到19%,可与晚期半导体激光器相当。与传统的IIII-V激光泵方案相比,该方法以超过60 tbit/s的前所未有的数据速率支持硅光子通信链接,并将与相关的DSP消耗降低99.99999%。这项工作为实现可扩展,高性能相干的集成光子系统铺平了道路,可能会构成众多应用。
图2:大众护卫技术的硬件组件。Sciex 7500+系统的Q0区域中的添加t杆电极积极去除污染离子(紫色符号),从而导致输入仪器的样品羽流(红色和绿色符号)。T杆电极下游的离子光学元件的视觉比较显示出对基质污染的影响较小,尽管在源窗帘板上沉积了明显的残留物(左上),当时与Sciex 7500系统上的相同组件相比,没有此保护,如右下所示。
摘要目的——图像分割是图像处理应用中最重要的任务之一。它是许多面向应用的宝贵工具,例如医疗保健系统、模式识别、交通管制、监视系统等。然而,准确的分割是一项关键任务,因为找到适合不同类型图像处理应用的正确模型是一个长期存在的问题。本文开发了一种新颖的分割模型,旨在成为使用任何类型图像处理应用的统一模型。所提出的精确并行分割模型 (PPSM) 结合了三种基准分布阈值技术来估计最佳阈值,从而实现分割区域的最佳提取:高斯分布、对数正态分布和伽马分布。此外,提出了一种并行增强算法来提高所开发的分割算法的性能并最大限度地降低其计算成本。为了评估所提出的 PPSM 的有效性,使用了不同的图像分割基准数据集,例如 Planet Hunters 2 (PH2)、国际皮肤成像合作组织 (ISIC)、微软剑桥研究院 (MSRC)、伯克利分割基准数据集 (BSDS) 和 COntext 中的通用对象 (COCO)。获得的结果表明,与其他分割模型相比,使用不同类型和领域的基准数据集,所提出的模型能够显著缩短处理时间,实现高精度。设计/方法/方法——所提出的 PPSM 结合了三种基准分布阈值技术来估计最佳阈值,从而实现分割区域的最佳提取:高斯分布、对数正态分布和伽马分布。结果——根据所获得的结果,可以观察到,所提出的基于 PPSM——最小交叉熵阈值 (PPSM - MCET) 的分割模型是一种具有高性能的稳健、准确、高度一致的方法。原创性/价值——使用 MCET 构建了一种利用高斯、伽马和对数正态分布组合的新型混合分割模型。此外,为了以最小的计算成本提供准确、高性能的阈值,所提出的 PPSM 使用并行处理方法来最大限度地减少 MCET 计算中的计算工作量。所提出的模型可用作许多面向应用的宝贵工具,例如医疗保健系统、模式识别、交通管制、监控系统等。关键词最小交叉熵阈值、混合分布、精确分割、并行计算论文类型研究论文
随着创新技术的范围不断扩大,其影响和应用也越来越多地与社会的各个方面相交叉,包括根深蒂固的宗教传统。本文开始了一段探索之旅,以弥合技术进步与信仰之间的鸿沟,旨在促进宗教界和科学界之间的对话。前者往往从冲突而非兼容性的角度看待技术进步。通过利用以技术为中心的视角,我们在新技术的功能和伊斯兰教的一些神学概念之间进行了隐喻性的比较。目的不是重新解释宗教概念,而是说明这两个领域如何和谐共存。这种比较分析可以作为对话的开端,旨在通过强调技术与宗教概念相一致的潜力来减轻人们对技术的任何担忧。通过营造一种将技术创新视为增强工具而非对传统的威胁的环境,我们为一种更具包容性的话语做出了贡献,鼓励宗教界参与并可能接受当代技术进步。
摘要:单重态裂变 (SF) 是量子信息科学中一种很有前途的方法,因为它可以通过与温度无关的光激发产生自旋纠缠的五重态三重态对。然而,在室温下合理实现量子相干性仍然具有挑战性,这需要精确控制三重态对的方向和动力学。本文表明,通过在大环内平行且紧密靠近地排列两个并五苯发色团,可以在室温下实现五重态多激子的量子相干性。通过在醛修饰的并五苯衍生物之间建立动态共价席夫碱键,可以高产率地选择性合成大环平行二聚体-1 (MPD-1)。MPD-1 在聚苯乙烯薄膜中表现出快速亚皮秒 SF 并产生自旋极化的五重态多激子。此外,MPD-1五重态的相干时间T2即使在室温下也长达400 ns。这种大环平行二聚体策略为未来利用分子多层量子比特的量子应用开辟了新的可能性。