Loading...
机构名称:
¥ 1.0

1。jao,J.Y。等。微生物暗物质即将到来:挑战和机遇。国家科学评论8(2021)。2。Rinke,C。等。 对微生物暗物质的系统发育和编码潜力的见解。 自然499,431-437(2013)。 3。 Yarza,P。等。 使用16S rRNA基因序列将培养和未培养的细菌和古细菌的分类结合在一起。 自然评论微生物学12,635-645(2014)。 4。 Dykhuizen,D.E。 圣诞老人重新审视:为什么有这么多种细菌? Antonie van Leeuwenhoek国际通用与分子微生物学杂志73,25-33(1998)。 5。 Parte,A.C.,Carbasse,J.S。,Meier-Kolthoff,J.P.,Reimer,L.C。 &Göker,M。具有命名(LPSN)的原核生物名称清单移至DSMZ。 国际系统和进化微生物学杂志70,5607-5612(2020)。 6。 Chaffron,S.,Rehrauer,H.,Pernthaler,J. &von Mering,C。来自环境和全基因组序列数据共存微生物的全局网络。 基因组研究20,947-959(2010)。 7。 QIN,J.J。等。 通过元基因组测序建立的人类肠道微生物基因目录。 自然464,59-70(2010)。 8。 Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。Rinke,C。等。对微生物暗物质的系统发育和编码潜力的见解。自然499,431-437(2013)。3。Yarza,P。等。使用16S rRNA基因序列将培养和未培养的细菌和古细菌的分类结合在一起。自然评论微生物学12,635-645(2014)。4。Dykhuizen,D.E。圣诞老人重新审视:为什么有这么多种细菌?Antonie van Leeuwenhoek国际通用与分子微生物学杂志73,25-33(1998)。5。Parte,A.C.,Carbasse,J.S。,Meier-Kolthoff,J.P.,Reimer,L.C。 &Göker,M。具有命名(LPSN)的原核生物名称清单移至DSMZ。 国际系统和进化微生物学杂志70,5607-5612(2020)。 6。 Chaffron,S.,Rehrauer,H.,Pernthaler,J. &von Mering,C。来自环境和全基因组序列数据共存微生物的全局网络。 基因组研究20,947-959(2010)。 7。 QIN,J.J。等。 通过元基因组测序建立的人类肠道微生物基因目录。 自然464,59-70(2010)。 8。 Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。Parte,A.C.,Carbasse,J.S。,Meier-Kolthoff,J.P.,Reimer,L.C。&Göker,M。具有命名(LPSN)的原核生物名称清单移至DSMZ。国际系统和进化微生物学杂志70,5607-5612(2020)。6。Chaffron,S.,Rehrauer,H.,Pernthaler,J.&von Mering,C。来自环境和全基因组序列数据共存微生物的全局网络。基因组研究20,947-959(2010)。7。QIN,J.J。等。 通过元基因组测序建立的人类肠道微生物基因目录。 自然464,59-70(2010)。 8。 Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。QIN,J.J。等。通过元基因组测序建立的人类肠道微生物基因目录。自然464,59-70(2010)。8。Methé,B.A。 等。 人类微生物组研究的框架。 自然486,215-221(2012)。 9。 lok,C。挖掘微生物暗物质。 10。Methé,B.A。等。人类微生物组研究的框架。自然486,215-221(2012)。9。lok,C。挖掘微生物暗物质。10。自然522,270-273(2015)。Medema,M.H。,De Rond,T。&Moore,B.S。 采矿基因组阐明了生命的专业化学。 自然评论遗传学22,553-571(2021)。 11。 Pavlopoulos,G.A。 等。 通过全球宏基因组学解开功能性暗物质。 自然622,594-602(2023)。 12。 Altae-Tran,H。等。 揭示了稀有Terascale聚类的稀有CRISPR-CAS系统的功能多样性。 Science 382,EADI1910(2023)。 13。 Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Medema,M.H。,De Rond,T。&Moore,B.S。采矿基因组阐明了生命的专业化学。自然评论遗传学22,553-571(2021)。11。Pavlopoulos,G.A。等。通过全球宏基因组学解开功能性暗物质。自然622,594-602(2023)。12。Altae-Tran,H。等。 揭示了稀有Terascale聚类的稀有CRISPR-CAS系统的功能多样性。 Science 382,EADI1910(2023)。 13。 Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Altae-Tran,H。等。揭示了稀有Terascale聚类的稀有CRISPR-CAS系统的功能多样性。Science 382,EADI1910(2023)。 13。 Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Science 382,EADI1910(2023)。13。Wilkinson,B。 &Micklefield,J。 采矿和工程自然产品生物合成途径。 自然化学生物学3,379-386(2007)。 14。 Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Wilkinson,B。&Micklefield,J。采矿和工程自然产品生物合成途径。自然化学生物学3,379-386(2007)。14。Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。 天然产品报告40,89-127(2023)。 15。 Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Chiang,C.Y。,Ohashi,M。&Tang,Y。通过异源表达和基因组挖掘的真菌天然产物生物合成的解密化学逻辑。天然产品报告40,89-127(2023)。15。Goig,G.A。 等。 直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。 柳叶刀微生物1,E175-E183(2020)。 16。 刘,Y.X。 等。 微生物组数据的扩增子和宏基因组分析的实用指南。 蛋白质和细胞12,315-330(2021)。 17。 Ustick,L.J。 等。 宏基因组分析揭示了海洋营养限制的全球规模模式。 科学372,287-291(2021)。 18。 Nissen,J.N。 等。Goig,G.A。等。直接从临床样本中的全基因组测序,用于高分辨率基因组流行病学和耐药性监测:一项观察性研究。柳叶刀微生物1,E175-E183(2020)。16。刘,Y.X。等。微生物组数据的扩增子和宏基因组分析的实用指南。蛋白质和细胞12,315-330(2021)。17。Ustick,L.J。等。宏基因组分析揭示了海洋营养限制的全球规模模式。科学372,287-291(2021)。18。Nissen,J.N。 等。Nissen,J.N。等。使用深层自动编码器改进了元基因组套筒和组装。自然生物技术39,555-560(2021)。

单个...

单个...PDF文件第1页

单个...PDF文件第2页

单个...PDF文件第3页

单个...PDF文件第4页

单个...PDF文件第5页

相关文件推荐

2024 年
¥1.0
2020 年
¥1.0
2025 年

...

¥8.0
2025 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2025 年

...

¥7.0
2015 年

...

¥1.0
2018 年
¥1.0
2024 年

...

¥31.0
2013 年

...

¥4.0
2021 年
¥3.0
2024 年
¥3.0
2024 年

...

¥5.0
2021 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2020 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年

...

¥7.0
2021 年

...

¥21.0
2024 年

...

¥1.0
2024 年
¥1.0
2022 年
¥1.0
2020 年

...

¥1.0
2020 年
¥4.0
2025 年
¥2.0