X射线成像是一种利用X射线的技术,可以通过平面X射线探测器揭示物质的内部结构,具有明显的先进的科学研究和现代社会。通常,间接平面X射线检测器通过闪烁器将X射线转换为可见的光子,而直接平面X射线检测器将X射线转换为通过半导体转换为电荷载体。随着对X射线成像应用的不断增长的需求,达到较低的辐射剂量和较高的空间分辨率是下一代平面X射线探测器的主要目标。尤其是,直接平面X射线探测器具有高空间分辨率,因为电荷载体沿着电场移动,几乎没有信号串扰,这对于此野心是最佳的。然而,对符合X射线检测的所有先决条件的出色半导体的追求,并且可以很容易地与Planar X射线检测器的读取电子设备集成在一起仍然是一项极具挑战性的努力。
可穿戴电子产品是一种新兴技术,它实现了日常电子设备的灵活性、可穿戴性和舒适性,可广泛应用于电子皮肤[1–4]、自供电传感器[5]和健康监测[6,7]等各种应用。尽管在开发多功能可穿戴设备方面已经取得了长足的进步,但电源仍然是一个难以解决的挑战。电池和超级电容器尽管具有良好的稳定性和效率,但仍然受到寿命、刚性、体积、封装和安全性等问题的限制。[8,9]作为未来自供电技术的潜在候选者,摩擦电和压电纳米发电机(TENG 和 PENG)能够从环境(风、雨和潮汐能)和人体运动(行走、跑步、拍手和弯肘)中获取机械能,并将其转化为电能为可穿戴设备供电。 [10–15] TENG通过摩擦起电和静电感应的耦合效应产生电能,而PENG则利用压电材料变形产生的偶极矩将机械能转化为电能。两者都是很有前途的能源技术,可以满足绿色能源和可持续发展的苛刻要求。然而,这两种技术也各有优缺点。例如,由于压电材料封装方便、结构灵活,PENG通常具有更好的电稳定性和操作灵活性,但其电输出相对较低。相反,TENG通常具有更高的电输出,但是它们的工作机制,例如垂直接触分离和横向滑动模式,需要两种不同材料的相对位移,这限制了设备的配置和应用场景。因此,一种混合型TENG和PENG能量收集器(TPENG)结合它们的优点,以获得更高的功率输出并适应不同的应用,是非常可取的。
摘要:透明导电材料 (TCM) 已广泛应用于触摸屏、平板显示器和薄膜太阳能电池等光电应用。TCM 的这些应用目前以 n 型掺杂氧化物为主。由于空穴迁移率低或 p 型掺杂瓶颈,高性能 p 型 TCM 仍然缺乏,这阻碍了高效的器件设计和透明电子等新应用。在这里,基于第一性原理计算,我们提出硫族化物钙钛矿 YScS 3 作为一种有前途的 p 型 TCM。根据我们的计算,它的光吸收起始点高于 3 eV,这使得它对可见光透明。它的空穴电导率有效质量为 0.48 m 0 ,是 p 型 TCM 中最小的之一,表明空穴迁移率增强。它可以通过阳离子位点上的 II 族元素掺杂为 p 型,所有这些都会产生浅受体。结合这些特性,YScS 3 有望提高 p 型 TCM 相对于 n 型 TCM 的性能。
卤化铅钙钛矿纳米晶体(LHP NC)具有诸多优良特性,包括宽范围的带隙可调性、可忽略的电子-声子耦合1、大的吸收截面2和窄的发射线宽,此外还具有溶液加工性、低成本合成和与其他现有器件组件的兼容性3,4,是潜在光电应用的有前途的材料,例如发光显示器、激光器和用于大面积可印刷光收集装置的纳米晶体墨水。5 – 10然而,尽管它们具有高量子产率(QY)和表面不敏感性,但基于溶液加工钙钛矿的第一个发光二极管(LED)的外部量子效率却不到 0.2%。 11 需要持续努力了解电子空穴复合途径和选择性改进辐射途径,才能将性能提高到约 15%。12 这主要是通过解决诸如增加高移动电荷的限制、配体交换和配体密度控制、表面缺陷钝化、掺杂和抑制俄歇非辐射复合等问题来实现的。13 – 17 然而,对
合金 BaSn_{1–x}Pb_{x}O_{3} Junichi Shiogai、Takumaru Chida、Kenichiro Hashimoto、Kohei Fujiwara、Takahiko Sasaki、
摘要:光伏细胞的演变与制造材料的进步本质上有关。本综述论文对基于硅,有机和钙钛矿太阳能电池的最新发展进行了深入的分析,这些发展是光伏研究的最前沿。我们仔细检查了每个材料类别的独特特征,优势和局限性,强调了它们对效率,稳定性和商业生存能力的贡献。基于硅细胞的持久相关性和晶体结构的最新创新。 有机光伏细胞的柔韧性和低成本产生的潜力进行了检查,而Perovskites的效率显着增长和易于制造。 本文还解决了物质稳定性,可扩展性和环境影响的挑战,从而对这些物质技术的当前状态和未来潜力提供了平衡的观点。基于硅细胞的持久相关性和晶体结构的最新创新。有机光伏细胞的柔韧性和低成本产生的潜力进行了检查,而Perovskites的效率显着增长和易于制造。本文还解决了物质稳定性,可扩展性和环境影响的挑战,从而对这些物质技术的当前状态和未来潜力提供了平衡的观点。
图 1. (a) 基于混合阳离子 2D-PPA 的钙钛矿结构图。2D 或准 2D 结构可能在晶粒边界处形成。此处显示 n = 2 准 2D 结构以供说明。使用单阳离子 PEA + 和混合阳离子 F5PEA + –PEA + 2D-PPA 的器件特性比较:(b) 具有正向和反向电压扫描方向的光电流密度-电压曲线;(c) EQE 曲线;(d) 稳定的功率输出;(e) 室温下相对湿度为 45%–60% 时未封装器件的储存稳定性(ISOS-D-1 稳定性)。
图 3. ML 方法对钙钛矿与非钙钛矿进行分类。a. 根据数据集中 XRD 模式范围(2 )的 CNN 预测准确度,b. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵真阴性,c. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵假阳性,d. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵假阴性,e. 根据数据集中 XRD 模式范围(2 )的 CNN 混淆矩阵真阳性,f. XRD 模式(d 间距(Å))对于随机森林分类的特征重要性(步长:2.18°(2 ))。
大多数航天器依赖太阳能作为主要能源。搜索具有高功率转化效率(PCE)的轻质和成本效果源导致有机无机金属卤化物钙钛矿太阳能电池(PSC)的发展。在本文中,在模拟的空间环境(例如热循环应力,高空气管,紫外线辐射和振动)中,比较了针对轨内立方体的不同孔传输材料(HTM)的PSC的性能。结果表明,即使有机和有机HTM显示出优质的初始PCE,碳HTM PSC在稳定性方面胜过它们,并且在太空中更实用。本文还讨论了卫星任务,并开发了硬件,以在板上进行第一次证明perovsk-Ite太阳能电池,以收集有关低年度轨道中钙钛矿太阳能电池性能以及如何进行地面测试结果的轨道内信息。
