在过去的二十年中,人们发现被称为超材料的人造结构具有非凡的材料特性,可以前所未有地操纵电磁波、弹性波、分子和粒子。负折射、带隙、近乎完美的波吸收、波聚焦、负泊松比、负热导率等现象都可以用这些材料实现。超材料最初是在电动力学中理论化和制造的,但对其应用的研究已扩展到声学、热力学、地震学、经典力学和质量传输。在本研究更新中,我们总结了超材料在各个领域的发展历史、当前进展状况和新兴方向,重点关注每个学科基础上的统一原则。我们讨论了超材料背后的不同设计和机制,以及每个领域的控制方程和有效材料参数。此外,我们还讨论了超材料的当前和潜在应用。最后,我们对超材料这一新兴领域的未来发展进行了展望。
本综述旨在分析一氧化二氮在太空推进中所有可能的应用。在概述其主要的物理和热性质之后,总结了 N 2 O 的分解行为,强调了催化剂对促进反应的重要性。报告了其作为绿色推进剂在单推进剂系统中的应用,并与过氧化氢作为肼的可能替代品进行了比较。报告了其作为液体双推进剂系统中的氧化剂的行为和性能,其中将其与不同的碳氢化合物结合以了解与 H 2 O 2 相比,它是否是肼衍生物和四氧化二氮的高毒性组合的合适的绿色替代品。最后,概述了 N 2 O 在混合火箭发动机中的不同应用,重点介绍了不同颗粒组合之间的回归率和燃烧性能的差异。
1 Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China 2 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China 3 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China 4芝加哥大学芝加哥大学分子工程学院,伊利诺伊州60637,美国5物理研究所,中国科学院,北京100190,中国6 CAS CAS CAS卓越量子计算中心拓扑量子计算中心,中国科学院拓扑量子学院,北京大学100190,北非物理学系7.实验室,Hefei 230088,中国
摘要。由于这些链接提供的高带宽和安全性,对自由空间光学通信的兴趣日益增加,因此产生了设计高性能卫星终端的必要性。为了开发这些终端,必须详细了解出现在太空环境中的光学机械现象及其对光学通信链路的影响。对在太空传播终端中出现的光学机械现象进行了综述,描述了它们每个现象的相关性。通过在光学和通信性能参数之间构建桥梁,收集了通过光学机械性能来计算对沟通性能的影响的方法。最后,可用于减轻这些现象的有害影响的技术被分类,并确定相关的研究挑战。
生化模型解释了Psy-Chobiological Life的复杂机制。他仍然无法解释从无生命的过渡到生物的过渡。阈值在哪里,它的本质在哪里,生化过程在与意识及其对躯体的影响及其对SOMA的影响相干,反之亦然?类似的问题是在其他心理过程中,它们的性质不适合生物的生物化学模型,并且根据生物化学相互作用是无法解释的,同样,根据量子过程(包括波浪物理学)来描述它是更容易的。它与心脏或其他器官的功能相似,在此,仅考虑细胞的生化过程,而忽略了生物电子过程。人不仅是一种纯粹的生物结构,而且还包含生物化学,生物电子,信息和控制论过程的基础,这些基础负责塑造人的心理生物学过程。科学中的当代生物系统在局部结构水平上被考虑,忽略了能量和信息结构。通过将认知重点转移到能量和信息结构上,该生物可以被视为信息的产生者:电磁,孤子,声学,声学,自旋和生物质量。这种生物电子结构以他的电子个性创造了同性电子。2。心脏传导系统
量子擦除实验通过让延迟事件影响先前记录的、可能广泛分布的经典信息的状态,突破了量子世界与经典世界之间的界限。对于这种令人不安的仅向前因果关系违反的唯一重要限制是,向前依赖信息的分布不能越过过去事件的光锥边界,这一特征确保不会发生因果关系违反——不会重写任何其他人记录的历史。对这一难题的擦除解释需要重写过去记录和分布的信息,这本身就是对因果关系的违反。量子宿命论解释消除了因果重写问题。然而,量子宿命论需要从向前依赖事件的光锥之外详细协调输入,从而严重违反了防止此类事件因果关系违反的同一限制。另一种方法是调用量子擦除的薛定谔猫变体,其中光锥内任意复杂的经典事件都变得依赖于未来事件的量子。与所有薛定谔猫对量子力学的解释一样,这种量子擦除的变体通过丢弃局部经典历史(例如猫身体的信息丰富状态)而违反了因果关系。擦除实验最直接的解释是遵循方程本身的引导,这些方程在纸面上的变换就好像它们的分量与普通的空间和时间限制无关,直到光速对它们施加的限制。将每个量子系统的光锥解释为非时间、非空间单位,其中经典时间和空间没有意义,这会导致多尺度、物质相关的时空定义,其中每个光锥都是一个单一的量子实体。在这样的宇宙中,时间和空间都不是预先存在的、与质量无关的连续体,而是大量不断相互作用和相互限制的量子实体光锥的共识。
本硕士论文探讨了电动汽车转换器封装用灌封材料开裂的问题,旨在找出根本原因并提出替代材料以提高性能和可靠性。该研究采用多学科方法,整合文献综述、热测试、目视检查和模拟技术来分析故障模式和机制。结果一致表明,材料之间的热应力和机械应力不相容性是导致开裂问题的重要原因。该研究强调了协调材料特性和行为以确保电子转换器组件的稳定性和耐用性的重要性。讨论和结论中提出了缓解这些挑战的建议。这项工作为优化材料选择和产品设计提供了宝贵的见解,以便在类似的电气产品和应用中提供更可靠、更坚固的封装解决方案。
每个器官有两个相邻的容器模型,容器之间由毛细管(壁)膜隔开。这是一个集中系统模型,不考虑膜以外的质量传递阻力。该模型的第一个改进是克罗格圆柱体。[4] 毛细血管簇形成毛细管网络。研究人员使用细胞模型,将单位或细胞(在本例中为毛细管)与集合隔离开来。克罗格圆柱体 [4] 表示细胞和分布式系统,可提供更多信息,例如溶质渗透到血管外组织的程度。鉴于克罗格绘制的包括毛细血管在内的血管草图[4],他只能使用圆柱形模型(如图1所示)。此后,出现了其他更像网络的草图,但克罗格圆柱体仍可用作细胞。值得注意的是,在流经填料床时,Happel 的细胞模型 [5 ] 对于组成填料床的每个球体都非常适用,适用于整个系统。Pfeffer 将这种流体流动模型扩展到质量传递。[6 ] 与 Happel 的模型 [4 ] 类似,其中添加单元来表示填料床,假设 Krogh 圆柱体平行添加以组成器官。Brinkman 方程用于求解血管外组织中的流动。由于这些方程的线性,因此可以获得解析解,从而避免使用数值方法求解它们,因为这些方程非常僵硬。[7 ] 比率 ffiffiffi kp = L 非常小,其中 k 是血管外组织的渗透率,L 是毛细管的长度。已有许多关于 Krogh 圆柱体中的质量传递研究报告。 [8-14]然而,研究人员几乎从未考虑过血管外组织中流动的影响,也从未考虑过流场和浓度场的二维性。此前,我们曾考虑过 Krogh 圆柱中的流动,[7]其中血管外组织中的流动使用 Brinkman 方程建模,该方程允许流线弯曲和/或流动在横向具有空间变化。然而,我们几乎没有发现任何流动从小动脉末端离开毛细血管,又从小静脉末端返回,就像 Guyton 和 Hall 所建议的那样。[15]原因是图 1 中的血浆有两条平行的路径