Established to create a centre of expertise for the reduction of risks related to disasters due to natural or man-made phenomena, characterised by the use of high-performance computing technology infrastructure, the HPC4DR Consortium brings together leading public research organisations (CNR National Research Council, INAF National Institute of Astrophysics, INFN National Institute of Nuclear Physics, INGV National Institute of Geophysics and Vulcanology) and阿布鲁佐(Abruzzo),马尔·莫里斯(Marche and Molise)地区的大学(格兰·萨索科学院(Gran Sasso Science Institute),拉奎拉大学,莫利斯大学,卡梅利诺大学,麦克雷拉托大学,麦克罗拉斯大学,乌尔比诺·卡洛·鲍尔大学,大学“ G. d'Annunzio”,Chieti-Pescara,Chieti-pescara,Marche Polytechnic大学)。07/11/2022 - 财团科学委员会“ HPC4DR - 高绩效计算灾难弹性的高性能计算”的主持人,“国家高绩效>”
量子相变及相关现象 强关联的理论模型和方法 强关联系统中的非平衡现象 非常规超导性 新材料中的超导性 量子磁性、斯格明子和挫折 金属-绝缘体跃迁 用于 SCES 研究的大型研究设施和新技术 SCES 的设备和应用 具有几何特性的关联材料 狄拉克/外尔半金属和拓扑非平凡材料 二维材料 关联相的费米面和电子结构 关联系统中的强自旋轨道相互作用 多铁性材料及相关材料 量子比特的材料和设备 纳米级的突发现象 材料设计和新型先进材料
摘要:将移动载体掺杂到普通的半导体中,例如SI,GAAS和ZNO是电子和光电子旋转的有利步骤。The recent emergence of a class of “ quantum materials ” , where uniquely quantum interactions between the components produce speci fi c behaviors such as topological insulation, unusual magnetism, superconductivity, spin − orbit-induced and magnetically induced spin splitting, polaron formation, and transparency of electrical conductors, pointed attention to a range of doping-related phenomena associated with chemical classes that di ff er来自传统的半导体。这些包括宽间隙氧化物,包含开孔D电子的化合物以及由重元素制成但具有显着带隙的化合物。在过去二十年中,在半导体物理学子场中开发的掺杂的原子电子结构理论最近已扩展并应用于量子材料。本评论的重点是解释从凝结物质理论的角度对量子材料的兴奋剂现象学及其在量子材料中的特殊性的基本理解所需的主要概念,并希望能够向化学家锻造桥梁,从而使该模拟中一些最有趣的化合物的合成。
Core Research Areas: Transport Phenomena, Heat Transfer, Thermodynamics, Biomass to value- added products, Catalysis, Reaction Engineering, Kinetic Modeling, Water Treatment, Hydrocarbon Engineering, Upstream and Downstream Petroleum Technology, Solid Waste Management, Nanomaterials and Nanotechnology, New and Renewable Energy, Functional coatings, Polymers, Polymeric coatings, Process Modeling and Simulation, Membrane Separation Processes, CO2 Sequestration, Edible films and coatings, Green Energy, Waste to Wealth, Coatings for Energy and Environment, Waste to Energy, Photo-catalysis, Photo-Electrolysis of water, Green Hydrogen, Self-Cleaning Cement, Environmental Engineering, Chemical Process Safety, Process Dynamics and Control, Fire Retardant Materials, Hydrogels, Waste Water Treatment, Smart Materials, Polymeric films, Renewable Energy, Energy Technology, Environmental Remediation,建筑材料,纺织流出的处理,木质纤维素生物量,计算流体动力学(CFD),非牛顿流体,多孔培养基流动,纳米流体流动,生物启发的粘合剂,微耗足设备,胶体悬架,复杂的综合体和复杂的系统模型,模型,模型。
实验数据。在对 SS f M 俱乐部成员的调查中,受访者被问及他们使用连续建模的频率,用于各种任务,例如实验设计和数据处理。连续建模的最常见用途是更深入地了解正在建模的过程。这意味着参数和不确定性的确定并不是唯一需要关注的问题,并且需要在可能的情况下考虑其他现象。对其他现象的考虑在一定程度上促使人们研究“看起来正确”作为验证标准,因为许多感兴趣的现象的行为是近似的,而不是详细的。例如,实验经验通常会让人了解某些变量的实际极限,这有助于确定模型的正确性。
总而言之,定量和定性研究方法具有其优势和局限性,研究人员必须仔细考虑根据研究问题和研究主题的性质使用哪种方法。定量研究对于生成目标和可靠的数值数据很有价值;它可以帮助研究干预和治疗的有效性。但是,它可能会过分简化复杂的现象,并且可能不适合研究难以通过数值数据测量的主观经验或社会现象。此外,定性研究对于获得对复杂现象,探索新的研究主题和产生假设以进行进一步研究的定性研究很有价值。但是,在设计定性研究时,应仔细考虑主观偏见和限制的潜力(Vivek&Nanthagopan,2021年)。方法论
This research is based on the Japan Science and Technology Agency (JST) Strategic Creative Research Promotion Project CREST "Esoterication of life phenomena caused by extracellular granules and the creation of basic technologies for controlling them (research general: Baba Yoshinobu, JPMJCR19H5), Mitsubishi Foundation's Special Grant for Natural Science Research, Academic Research Grant for COVID-19, JSPS's Grant for Scientific Research (JSPS) Academic Change Area Research (A) "Development of single-molecular measurement technology and device for unexplored proteins (Principal researcher: Watanabe Rikiya, 20H05931)," and the basic research (A) "Development of novel virus infection diagnosis methods based on digital detection technology (Principal researcher: Watanabe Rikiya, 21H04645)," and the Japan Agency for Medical Research and Development (该计划得到了各种机构的支持,包括用于促进新兴和振兴感染疾病的创新药物的研究项目(主要研究者:Watanabe Rikiya,JP22FK0108542),公共和私人研究人员发掘支持项目(主要研究人员:沃特纳贝Rikiya,JP2222 He)。 ----
Core Research Areas: Transport Phenomena, Heat Transfer, Thermodynamics, Biomass to value- added products, Catalysis, Reaction Engineering, Kinetic Modeling, Water Treatment, Hydrocarbon Engineering, Upstream and Downstream Petroleum Technology, Solid Waste Management, Nanomaterials and Nanotechnology, New and Renewable Energy, Functional coatings, Polymers, Polymeric coatings, Process Modeling and Simulation, Membrane Separation Processes, CO2 Sequestration, Edible films and coatings, Green Energy, Waste to Wealth, Coatings for Energy and Environment, Waste to Energy, Photo-catalysis, Photo-Electrolysis of water, Green Hydrogen, Self-Cleaning Cement, Environmental Engineering, Chemical Process Safety, Process Dynamics and Control, Fire Retardant Materials, Hydrogels, Waste Water Treatment, Smart Materials, Polymeric films, Renewable Energy, Energy Technology, Environmental Remediation,建筑材料,纺织流出的处理,木质纤维素生物量,计算流体动力学(CFD),非牛顿流体,多孔培养基流动,纳米流体流动,生物启发的粘合剂,微耗足设备,胶体悬架,复杂的综合体和复杂的系统模型,模型,模型。
图 1:在传统的科学探究方法下,理解生物现象非常困难。A:在演绎法理模型下,科学解释具有类似定律的演绎结构,其中观察到的现象 P 可以通过参考更一般的原理来解释。在这种情况下,对船桨弯曲外观的观察首先可以用斯涅尔定律来解释,该定律可以从经典电磁学理论中推导出来。理论规定了描述特定观察结果的类似定律的原理。B:生物现象的三个关键特征使得使用演绎法理解释难以理解:多维性、条件性和突现属性。C:在机器学习的背景下描绘的三个超越解释的理解认识论概念:信息压缩、De Regt 实用理论和建模依赖关系。