图1。用于研究DNA G4或IMS的方法论摘要。它们包括低吞吐量方法。低通量可以分为生物物理和生化方法。高通量可以分类为基于计算机的预测[5,6]和实验法学研究。Experimental omics studies include small-molecule ligand coupled with DNA polymerases top assay (G4-seq) [7,8], antibody [BG4-(Ch)IP-seq, iM-IP-seq] [9,12,14,15], truncated native protein (G4P-seq) [10], and small-molecule ligand affinity capture (G4DP-SEQ)[11]测序。黑色箭头指示植物中使用的方法,红色问号表示人类而非植物中使用的方法,而蓝色问号表示未在人类和植物中应用的潜在方法。缩写:DNA G4S,DNA G-四链体; ims,i-motifs。
骨与种植体接触 (BIC) 是骨整合和牙种植体初期稳定性中最重要的问题之一。种植体周围骨的组织学已被广泛报道。然而,仍然缺乏关于增强骨生物力学、组织学和长期稳定性的信息。增强骨中种植体表面的特性及其对 BIC 和种植体稳定性的影响,以及种植体宏观和微观结构对增强骨中初期稳定性的贡献尚未完全了解。我很高兴邀请您向本期“骨与牙种植体”特刊提交手稿。感兴趣的主题包括但不限于:- 骨与种植体接触和骨体积;- 增强骨生物力学特性和
摘要可再生能源(RES)和储能技术的开发是现代电力系统跨形成的关键要素。作为最干净和大多数的能源来源之一,太阳能的重要性越来越重要,需要优化其在本地电力系统中的使用。这项研究分析了带有太阳能发电厂和储能设备的本地电源系统(LES)设备的参数,并在不同的停电期间确定其操作模式。作为研究的一部分,使用REOPT平台进行了4个不同日期 - 6月22日,3月22日,3月22日和9月22日,使用REOPT平台对LES接收者的可靠性进行分析。在第二步中,使用系统顾问模型(SAM)软件分析太阳能系统模式。分析表明,与南方方向的模块子组件的方向相对于±45°,可以在早晨和傍晚的小时内提高功率输出。还表明,模块在两个子组件中的排列允许在中午降低倒置器的功率截止,因此,有一个模块排列,截止值为1.743%,并且有两个亚组件,为0.339%。
摘要 在可再生能源的背景下,虚拟发电厂 (VPP) 被视为智能控制复杂、分散、分布式和异构发电过程的关键技术。然而,VPP 的经济和生态控制是一项非常关键的任务:由于 VPP 在复杂性、技术组合、环境条件和运行期间需要优化的目标方面具有很大的变化性,单个 VPP 的控制需要能够有效地考虑所有这些单独的约束条件。因此,我们在本文中提出了一种结合计算智能 (CI) 元启发式的 VPP 抽象控制方法,该方法旨在灵活适用于不同的 VPP 规模、目标和发电厂类型。此外,该方法还提供了构建分层 VPP 的可能性,因为这通常是系统运营商的要求。为了证明该控制方法的有效性,考虑了三个示例性优化目标,并将其应用于不同组合的扁平/分层 VPP:最小化运行储备需求、最小化 CO 2 排放量和最大化发电厂灵活性。此外,该方法与三个示例性 CI 元启发式方法相结合并进行评估:模拟退火 (SA)、粒子群优化 (PSO) 和蚁群优化 (ACO)。为了使这种先进的 CI 元启发式方法在优化问题中的使用合法化,梯度下降优化 (GDO) 作为一种传统的优化技术也被考虑在内。基于具体的示例场景以及广泛的汇总测试运行,结果表明该控制方法能够有效地优化各种 VPP 组合以实现给定的目标。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
高光谱成像为分析人工生态系统中地上植物的特征提供了强大的工具,能够提供涵盖不同波长的丰富光谱信息。本研究提出了一种高效的高光谱数据分割和后续数据分析流程,通过使用稀疏混合尺度卷积神经网络集成,最大限度地减少了用户注释的需求。分割过程利用集成的多样性,以最少的标记数据实现高精度,从而减少了劳动密集型的注释工作。为了进一步增强稳健性,我们结合了图像对齐技术来解决数据集的空间变异性问题。下游分析侧重于利用分割数据处理光谱数据,从而实现植物健康状况的监测。该方法为光谱分割提供了一种可扩展的解决方案,并有助于在复杂受控环境中对植物状况进行切实可行的洞察。我们的研究结果证明了将先进的机器学习技术与高光谱分析相结合,可以实现高通量植物监测。
神经植入物的特殊技术特征,特别是收集和处理神经元数据的能力,对临床验证和伦理监督提出了进一步的挑战。神经数据被认为特别敏感,需要比其他健康信息更高级别的保护。不安全的数据传输、不充分的数据保护指南和黑客攻击的风险只是在这种情况下需要特别防范的一些潜在漏洞。
免责声明/投诉规定 如果您认为某些材料的数字出版侵犯了您的任何权利或(隐私)利益,请告知图书馆并说明您的理由。如果有合理的投诉,图书馆将使该材料无法访问和/或将其从网站上删除。请咨询图书馆:https://uba.uva.nl/en/contact,或致函:阿姆斯特丹大学图书馆,秘书处,Singel 425,1012 WP Amsterdam,荷兰。我们将尽快与您联系。
1 绿色农药国家重点实验室、教育部绿色农药与农业生物工程重点实验室、贵州大学精细化工研发中心,中国贵阳,2 美国佛罗里达大学柑橘研究与教育中心昆虫学与线虫学系,佛罗里达州阿尔弗雷德湖,美国,3 开罗大学理学院昆虫学系,埃及吉萨,4 伊苏布里亚大学生物技术与生命科学系,意大利瓦雷泽,5 BAT 中心-生物启发农业环境技术校际研究中心,那不勒斯费德里科二世大学,意大利那不勒斯,6 西华师范大学西南野生动植物资源保护教育部重点实验室,中国南充,7 法国雷恩大学 CNRS,ECOBIO(生态系统、生物多样性、进化),UMR 6553,雷恩,法国,8 生物多样性与生态系统动力学研究所(IBED),进化生物学和种群生物学,阿姆斯特丹大学,荷兰阿姆斯特丹,9 伊利诺伊大学生物科学系,美国伊利诺伊州芝加哥和
是通过对外部MI Crobial入侵形成第一道防线。并发症,例如机械刺激,局部感染和伤口愈合受损,在此界面上很常见,直接影响了Osseointe Gration的成功和植入物的整体功效[2]。在植入物界面上有效地整合皮肤病学兼容材料,可能会降低这些风险并增强患者的预后。骨科植入物中的主要挑战之一是保持稳定的无感染皮肤植入物界面。由刚性植入物边缘引起的机械刺激会破坏自然的愈合过程,而微生物感染会带来严重的全身养殖风险。延迟的骨整合,通常会因这些问题而加剧,降低了植入物的寿命,并需要进行复兴手术,从而减轻了患者和医疗保健系统的负担[1]。目前,植入物中使用的材料通常用于结构完整性和骨整合,但要