摘要:Facioscapulohumeral营养不良(FSHD,OMIM:158900,158901)是成年人中最常见的Dys-Tropherphy,到目前为止,还没有治疗。已经表征了疾病的不同基因座,它们都导致Dux4蛋白的异常表达,这会损害肌肉的功能,最终导致细胞死亡。在这里,我们使用基因编辑来试图通过靶向其poly(a)序列永久关闭Dux4表达。我们在FSHD成肌细胞上使用了类似转录激活剂样效应子核酸酶(TALEN)和CRISPR-CAS9核酸酶。测序了150多个Topo克隆,仅观察到4%的indels。重要的是,在其中2个中,Dux4 poly(a)信号在基因组水平上被消除,但由于使用了非典型上游poly(a)信号序列,仍会产生DUX4 mRNA。这些实验表明,在基因组水平上靶向DUX4 PA可能不是FSHD治疗的适当基因编辑策略。
。CC-BY 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2021 年 12 月 8 日发布了此版本。;https://doi.org/10.1101/2021.12.08.471721 doi: bioRxiv preprint
通讯作者:Albert R. La Spada,医学博士,博士病理学与实验室医学,神经病学,生物化学和神经生物学与行为UCI UCI神经治疗学中心加利福尼亚州Irvine University of California Irvine Universion,CA,美国加利福尼亚州92697 Alaspada@uci.edu.edu /div>
摘要:目的:热休克蛋白70(HSP70)家族是一组高度保守的分子助力者,对于维持细胞稳态必不可少。这些蛋白质对于蛋白质折叠,组装和降解是必需的,并且涉及从应力条件中恢复细胞。HSP70蛋白质因热休克,氧化应激和致病性感染而上调。他们的主要作用是防止蛋白质聚集,重新折叠错误折叠的蛋白质以及靶向不可损害的蛋白质的降解。鉴于它们参与了基本细胞过程和应激反应,HSP70蛋白对于细胞存活和调节癌症,神经变性和其他病理的疾病结局至关重要。本研究旨在了解各种HSP70成员的主要结构,物理化学特性,磷酸化,泛素化和替代聚腺苷酸化位点预测。方法:SMART和Internoscan软件用于域分析。分别使用Protparam,NetPhos 3.1服务器DTU和Mubisida进行物理化学分析,磷酸化和泛素化站点分析。使用EST数据库研究了替代聚腺苷酸化。结果:域分析表明,某些HSP70成员中存在盘绕圈和核苷酸结合结构域。五个HSP70家庭成员在其3'UTR中具有替代的聚腺苷酸化位点。结论:确定工作为其结构,功能,相互作用组和聚腺苷酸化模式提供了宝贵的见解。研究其在癌症等疾病中的治疗潜力可能会有所帮助。
RNA 聚合酶 II (RNAPII) 转录是一个动态过程,延伸率经常变化。然而,RNAPII 延伸动力学变化的生理相关性仍不清楚。我们在此表明,在酵母中,降低转录延伸率的 RNAPII 突变体会导致替代性多聚腺苷酸化 (APA) 发生广泛变化。我们揭示了 APA 影响慢突变体中基因表达的两种机制:3 ′ UTR 缩短和上游干扰非编码 RNA 的过早转录终止导致的基因去抑制。令人惊讶的是,受这些机制影响的基因富含涉及磷酸盐吸收和嘌呤合成的功能,这些过程对于维持细胞内核苷酸池至关重要。由于核苷酸浓度调节转录延伸,我们的研究结果表明 RNAPII 是核苷酸可用性的传感器,并且对核苷酸池维持很重要的基因已采用响应降低转录延伸率的调节机制。
Unerstanding polyadenylation mediated mechanism critical for pluripotency and stem cell fate choice 1:00 pm - 2:00 pm Lunch break and Poster Presentation Session-II Molecular Basis of Disease - Part I (Chair- Subba Rao) 2:00 pm – 2:25 pm Anubama Rajan Age-Related Differences and Unique Tropism of RSV in Human Nasal Organoids 2:25 pm – 2:50 pm Bhavana Muralidharan
• 细胞质多聚腺苷酸化元件结合蛋白 (CPEB1) • 与 3'UTR、CPSF 中富含 A/U 的 CPE 相互作用 • PARN(多聚腺苷酸核酸酶)和 Gld2(多聚腺苷酸聚合酶)的酶活性相反 • Aurora A 对 CPEB1 的磷酸化释放 PARN,Gld2 活性占主导地位 • PABPC1 关联、多核糖体(帽子相互作用)和翻译激活
第9周第12章及以后:转录因子,增强剂等。Signal Transduction Chapter 14: Posttranslational modifications RNA processing I, RNA splicing, Introns, Exons Week 10 Chapter 15: RNA processing II CAP, Polyadenylation Chapter 16: Translation Initiation Week 11 Chapter 17: Translation Elongation, Termination Chapter 18: Translation Ribosome Week 12 Chapter 20: DNA replication I: Mechanism, Enzymology, Mutation, and Repair Chapter 21: DNA replication II Detailed机制,终止考试8月3日,请遵循时间表(对于章节,讲座视频,考试等)如画布上发布的。此教学大纲只是提供了课程的概述。
PLENARY and CONCURRENT SESSIONS Bioinformatics & Genomics Chromatin & Epigenetics Chemical Biology of RNA New Technologies Extracellular RNA Granules & Condensates High through-put discovery Interconnected RNA Processes Long Non-coding RNAs & Circular RNAs Origins of Life and evolution Regulatory RNAs in Bacteria & Archaea Ribosome Biogenesis & Modification Ribozymes & Riboswitches RNA & Cellular Immunity RNA & Disease RNA Modification & Editing RNA Nanotechnology RNA Structure, Folding & Modeling RNA Synthetic Biology & Systems Biology RNA Transport & Localization RNA Turnover RNPs: Biogenesis, Structure & Function Polyadenylation & 3′ end formation Small Non-coding RNAs in Eukaryotes Splicing Mechanism Splicing Regulation & Alternative用于治疗和诊断转录的靶向RNA靶向RNA:机理与生物学翻译机制翻译调节tRNA:处理和功能病毒RNAS
尽管最近在提高慢病毒基因疗法的疗效方面取得了进展,但相当一部分生产的载体含有不完整且可能无功能的 RNA 基因组。这可能会破坏慢病毒的基因传递,并增加制造成本,必须加以改进以促进慢病毒基因疗法的广泛临床实施。在这里,我们比较了三种长读测序技术检测载体设计问题的能力,并确定纳米孔直接 RNA 测序是最强大的。我们展示了这种方法如何识别和量化由隐蔽剪接和多聚腺苷酸化位点引起的不完整 RNA,包括广泛使用的土拨鼠肝炎病毒转录后调控元件 (WPRE) 中的潜在隐蔽多聚腺苷酸化位点。使用慢病毒 RNA 的人工多聚腺苷酸化,我们还在分析的慢病毒载体中识别出多个发夹相关截断,这些截断占检测到的 RNA 片段的大部分。最后,我们表明这些见解可用于优化慢病毒载体设计。总之,纳米孔直接 RNA 测序是慢病毒载体质量控制和优化的有力工具,可能有助于改进慢病毒制造,从而开发更高质量的慢病毒基因疗法。