摘要:背景:B细胞特异性Moloney MLV插入位点1(BMI-1)属于Polycomb组(PCG)基因,是一种转录抑制器,可在发育过程中维持适当的基因表达模式。研究BMI-1基因是否通过调节骨微环境来对BMI-1/ - 小鼠诱导的骨骼衰老有矫正作用。方法:本研究中使用了窝窝杂合雄性和雌性小鼠(BMI-1 +/-)。在野生型小鼠(10只小鼠,WT组)和BMI-1敲除小鼠(10小鼠,BKO组)中进行了相关的实验,以分析表型,骨骼射线照相,微型造影术,组织学,组织学,免疫组织化学染色,蛋白质印迹分析以及ROS水平的检测。结果:我们的结果表明,BMI-1基因可以按比例拯救受到BMI-1基因缺损诱导的骨老化的小鼠。bmi-1通过多个方面在骨骼中起抗衰老的作用,例如增加成骨细胞骨形成以及减少破骨细胞骨吸收,刺激增殖,减少凋亡,抑制活性氧气(ROS)和延迟DNA损伤。结论:我们的结果表明,BMI-1可能在纠正BKO小鼠的骨骼衰老中起重要作用和重要作用。同时,它可以为BMI-1在骨骼中的抗衰老中的临床应用提供理论基础。
摘要:间变性甲状腺癌 (ATC) 是一种罕见且致命的甲状腺癌,迫切需要研究与其侵袭性生物学相关的新分子靶点。在此背景下,在侵袭性实体肿瘤中经常观察到多梳抑制复合物 2/EZH2 的过度激活,从而诱导染色质压缩,这使得 EZH2 甲基转移酶成为治疗的潜在靶点。然而,染色质可及性的失调在甲状腺癌中尚未得到充分研究。在本研究中,EZH2 表达受 CRISPR/Cas9 介导的基因编辑调节,并用 EZH2 抑制剂 EPZ6438 单独或与 MAPK 抑制剂 U0126 联合使用进行药理学抑制。结果表明,CRISPR/Cas9 诱导的 EZH2 基因编辑在体外降低了细胞生长、迁移和侵袭,当将 EZH2 编辑的细胞注射到免疫功能低下的小鼠模型中时,肿瘤生长减少了 90%。肿瘤的免疫组织化学分析显示,与对照肿瘤相比,EZH2 编辑肿瘤中的肿瘤细胞增殖减少,癌症相关成纤维细胞的募集减少。此外,EZH2 抑制诱导了甲状腺分化基因的表达和 ATC 细胞中的间充质-上皮转化 (MET)。因此,这项研究表明,针对 EZH2 可能是一种有前途的 ATC 新辅助治疗方法,因为它可以促进体外和体内的抗肿瘤作用并诱导细胞分化。
弥漫性中线神经胶质瘤(DMG),迄今被称为弥漫性内在蓬托胶质瘤(DIPG),是一种罕见且具有侵略性的脑癌形式,主要影响儿童。尽管尚不清楚DMG/DIPG的确切原因,但在编码His-Tone H3蛋白的基因中,DMG/DIPG肿瘤的很大一部分含有突变,特别是H3K27M突变。该突变降低了H3K27ME3的水平,H3K27ME3是一种组蛋白修饰,在通过表观遗传调节调节基因表达中起着至关重要的作用。突变还改变了Polycomb抑制复合物2(PRC2)的功能,从而防止了与癌症发展相关的基因的抑制。由组蛋白H3突变引起的H3K27ME3的降低伴随着H3K27AC的水平增加,H3K27AC的水平是与主动转录有关的翻译后修饰。失调明显影响基因表达,从而通过促进不受控制的细胞增殖,肿瘤生长和代谢来促进癌症的发展和进展。DMG/DIPG改变蛋氨酸和三羧酸周期的代谢,以及葡萄糖和谷氨酰胺摄取。已经对表观遗传和代谢变化在DMG/DIPG发育中的作用进行了广泛的研究,并且了解这些变化对于开发针对这些途径的疗法至关重要。目前正在进行研究以确定DMG/DIPG的新治疗靶标,这可能导致这种毁灭性疾病的有效治疗发展。
6 Riken综合医学科学中心发育遗传学实验室,1-7-22 Suehiro-Cho,Tsurumi-Ku,Yokohama,Kanagawa,Kanagawa 230-0045,日本。 摘要新皮层发育的特征是神经祖细胞(NPC)膨胀,神经发生和神经胶质发生的顺序相。 多肉体介导的表观遗传机制在调节发育过程中的谱系潜力中起着重要作用。 PolyComb抑制性复合物1(PRC1)的组成在哺乳动物中高度多样,并被认为有助于细胞命运的上下文特异性调节。 在这里,我们对规范PRC1.2/1.4和非典型的PRC1.3/1.5的作用进行了侧面副副作用,所有这些作用均在NSC增殖和分化中表达。 我们发现NSC中PCGF2/4的缺失导致在神经发生和神经胶原型相期间,PCGF2/4的删除大大减少和改变谱系命运,而PCGF3/5则起了较小的作用。 从机械上讲,编码干细胞和神经源性因子的基因由PRC1结合,并在PCGF2/4缺失时差异表达。 因此,与非典型PRC1相比,在增殖,神经源和神经胶原相比,在增殖,神经源和神经胶原阶段期间,规范PRC1在不同的PRC1亚复合体中有助于不同的阶段,而是在NSC调节中起着更重要的作用。 NPC增殖和的精确空间和时间调节6 Riken综合医学科学中心发育遗传学实验室,1-7-22 Suehiro-Cho,Tsurumi-Ku,Yokohama,Kanagawa,Kanagawa 230-0045,日本。摘要新皮层发育的特征是神经祖细胞(NPC)膨胀,神经发生和神经胶质发生的顺序相。多肉体介导的表观遗传机制在调节发育过程中的谱系潜力中起着重要作用。PolyComb抑制性复合物1(PRC1)的组成在哺乳动物中高度多样,并被认为有助于细胞命运的上下文特异性调节。在这里,我们对规范PRC1.2/1.4和非典型的PRC1.3/1.5的作用进行了侧面副副作用,所有这些作用均在NSC增殖和分化中表达。我们发现NSC中PCGF2/4的缺失导致在神经发生和神经胶原型相期间,PCGF2/4的删除大大减少和改变谱系命运,而PCGF3/5则起了较小的作用。从机械上讲,编码干细胞和神经源性因子的基因由PRC1结合,并在PCGF2/4缺失时差异表达。因此,与非典型PRC1相比,在增殖,神经源和神经胶原相比,在增殖,神经源和神经胶原阶段期间,规范PRC1在不同的PRC1亚复合体中有助于不同的阶段,而是在NSC调节中起着更重要的作用。NPC增殖和在新皮层,茎和祖细胞开发过程中的引入最初是增殖的,然后再依次引起注定到不同皮质层的神经元,然后产生星形胶质细胞和少突胶质细胞(Lodato&Arlotta,2015年,2015年; Qian等人,2000年)。
哺乳动物基因组中DNA甲基化的主要功能是抑制转座元素(TES)。在癌细胞中通常观察到的广泛的甲基化损失导致TE的表观遗传抑制丧失。衰老过程的特征是甲基甲基的变化。然而,这些表观基因组改变对沉默的影响及其功能后果尚不清楚。为了评估衰老中TES的表观遗传调节,我们在人类乳腺腔上皮细胞(LEPS)中介绍了DNA甲基化(LEPS),这是一种与年龄较大的乳腺癌有关的关键细胞谱系 - 来自年龄较大的乳腺癌。我们在这里报告说,几个TE亚家族在正常LEP中充当调节元素,并且这些子集的一部分显示出随着年龄的增长而显示一致的甲基化变化。在这些TES处的甲基化变化发生在谱系特异性转录因子结合位点,与谱系特异性的丧失一致。主要显示甲基化损失,而CpG岛(CGI)是Polycomb抑制性复合物2(PRC2)的靶标,显示衰老细胞中甲基化的增加。在衰老的LEP中,许多具有甲基化损失的TE都有乳腺癌样品中调节活性的证据。我们还表明,TES的甲基化变化会影响与腔乳腺癌相关的基因的调节。这些结果表明,衰老会导致TES的DNA甲基化变化,从而弥补了维持谱系特异性,并可能增加对乳腺癌的敏感性。
论文主题:BAP1/ASXLS复合物及其相互作用伙伴的生化和功能表征:对表观遗传调节,细胞周期控制和肿瘤抑制的影响。Affar博士的团队对表观遗传调节的复杂机制感兴趣,特别是与PolyComb组的蛋白质有关。BAP1/ASXLS复合物,表观遗传调节中的关键参与者是我们研究的核心。尽管它们的重要性,但仍然有很多事情可以发现BAP1/ASXLS蛋白如何促进表观遗传调节以及它们的放松管制如何影响癌症和其他疾病。使用先进的基因组学方法,生物信息学,蛋白质组学和小鼠遗传学(包括CRISPR/病例技术),我们旨在发现BAP1/ASXLS蛋白在表观遗传调节和癌症中的作用和机制。这个项目是在蛋白质组学,基因组学和细胞信号传导的最前沿学习方法和概念的绝佳机会。El Bachir Affar博士的研究团队旨在招募非常有动力的学生博士学位。候选人必须接受分子生物学,生物化学或生物医学科学或相关学科的培训,具有出色的注释,组织技能,并且对细胞信号传导和分子肿瘤学有生动的兴趣。年度奖学金28,000美元,有兴趣的候选人必须提交课程,大学笔记的陈述和单个PDF文档中的求职信,致为:El Bachir Affar,博士(El.bachir.affar@umontreal.ca) https://pubmed.ncbi.nlm.nih.gov/?term= el%2C+Affar选择出版物:核链接氨基酸供应(Nature Comm 2021)https://pubmed.ncbi.nlm.nlm.nih.gov/3488888888888888888888887888888715/肿瘤抑制BAP1(自然通讯2018)的去泛素酶活性工艺(自然通讯2020)https://pubmed.ncbi.nlm.nih.gov/33230107/自体泛素化保护肿瘤抑制BAP1免受胞质隔离的影响,由胞质隔离免受胞质的隔离,由dypical ubiquitin ubigitin ubase ubease ubease ubease ubease ubease ubease ubease ubease ubease ubease ubease ubease ubease ubeasual ubequel ubebase ubequarl ubequel ubequar ubequar ubequar ubequar ubequar ubequar ube ube 2014) https://pubmed.ncbi.nlm.nih.gov/24703950/
谷物宽度和重量2(GW2)是一种E3-泛素连接酶编码基因,对谷物物种中谷物的大小和重量负调节。因此,建议禁用GW2基因活性以提高作物生产率。我们在这里表明,大麦GW2.1同源物的CRISPR/CAS介导的诱变会导致细长谷物的发展和蛋白质含量增加。同时,GW2.1功能的损失引起了由于尖峰数量减少和谷物设置低而引起的明显晶粒屈服不足。我们还表明,GW2.1缺乏作物产量和蛋白质含量引起的相反作用在很大程度上与培养条件无关。这些发现表明大麦GW2.1基因对于产量和晶粒性状之间的优化是必需的。总的来说,我们的数据表明,大麦中GW2.1基因活性的丧失与多效性效应相关,对生成器官的发展以及因此谷物产生产生了负面影响。我们的发现有助于更好地理解谷物的发育以及GW2.1控制大麦的定量和定性遗传改善中控制的UTI。