抽象的本体感受是检测运动神经元的肢体姿势的“第六含义”。它需要在肌肉骨骼系统和感觉受体之间进行自然整合,这在现代机器人中具有挑战性,旨在以低成本的机械设计和算法计算,以轻巧,适应性和敏感设计。在这里,我们介绍了软性多面体网络,具有对物理相互作用的嵌入式视觉,能够通过学习动力学特征来适应性动力学和粘弹性本体感受。此设计使被动适应全态相互作用,这是通过嵌入内部的微型高速运动跟踪系统在视觉上捕获的。结果表明,软网络可以在动态相互作用中推断出具有0.25/0.24/0.35 N和0.025/0.025/0.025/0.025/0.025/0.034/0.006 nm的实时6D力和扭矩。我们还通过添加蠕变和放松修饰者来鉴定预测结果,在静态适应过程中将粘弹性纳入静态适应性。提出的软网络结合了设计,全型适应性和本体感受的简单性,具有高精度,使其成为机器人技术的多功能解决方案,以低材料成本,超过一百万个用于敏感和竞争性的和触摸基于触摸的几何形状重构等任务的循环超过一百万个。这项研究为自适应抓握,软操纵和人类机器人相互作用的软机器人提供了新的见解。
DNA纳米结构是一类自组装纳米材料,在生物医学和纳米技术中具有广泛的潜在应用。使用人直觉或简单算法的简单DNA Polyhedra的发展可以追溯到1980年代。今天,该领域以DNA折纸构建体为主导,以至于丢失了用于设计非原虫纳米结构的原始算法。在这项工作中,我们描述了Arktos:一种用于设计简单DNA Polyhedra而无需使用DNA折纸的算法。arktos设计序列被预测使用模拟退火优化折叠成所需的结构。作为概念证明,我们使用Arktos设计了一个简单的DNA四面体。合成了生成的寡核苷酸序列,并通过聚丙烯酰胺凝胶电泳对实验验证,表明它们折叠成所需的结构。这些结果表明,根据研究界的需求,Arktos可用于设计自定义DNA Polyhedra。
摘要。镍氧化物(NIO)是一种半导体材料,具有独特的电子结构。由于其独特的电子特性,NIO是光电子,照片催化和诸如太阳能电池等能量设备的各种应用的有趣候选人。在当前的工作中,已经进行了量身定制Nio乐队的差距。一种简单的共沉淀方法,然后使用热处理来合成材料。在热处理之前,对合成材料的X射线衍射研究显示出存在氢氧化镍[Ni(OH)2]。在1000 O C下钙化一小时,揭示了单相NIO。热处理后,发现发现粒径增加了。使用UV-VIS光谱法记录了[Ni(OH)2]和NIO的吸收光谱。分别观察到Ni(OH)2和NIO的TAUC图A的带隙为4.2 eV和1.8 eV。观察到,注意到NIO的带隙显着减少。通过使用FESEM进行表面形态学研究,这表明板材像[ni(oh)2]的结构一样转变为钙化时多面形的Nio。通过能量分散光谱分析证实了镍和氧的存在。
无机化合物。CO3:了解核化学的重要性,其相关反应及其应用。化学键合价键理论,杂交理论,VSEPR理论,分子轨道理论,轨道的波浪机械描述,MOS在HOMO和异核性核分子中的应用,分子轨道的对称性,分子轨道的对称性,金属中键合的理论。酸碱概念介绍 - 布朗斯特 - 低点定义,溶剂系统定义,勒克斯 - 河 - 液体定义,刘易斯定义,硬酸和碱基概念(HSAB),硬,边框线以及软酸和基础的分类。Main Group Chemistry-General discussion on the properties of main group elements, boron cage compounds, structure and bonding in polyhedral boranes, carboranes and metalloboranes, styx notation, Wade's rule, electron count, synthesis of polyhedral boranes and carboranes, silicones, silicates, boron nitride, borazines and phosphazenes, hydrides,硝基元(N,P),墨西哥蛋白酶(S,SE&TE)的氧化物和氧气,卤素,Xenon化合物,假卤素和外Halagen化合物,碳的同种异体,合成和反应性的硅和磷的无机聚合物的合成和反应性。还原电势延迟和霜图。内部过渡金属 - 对灯笼和肌动剂的介绍,灯笼/肌动剂的位置,包括电子结构和氧化态,兰烷基和actinide收缩,肌动蛋白假设,光谱,兰特烷基的光谱和磁性的物理特性,灯笼乙酰胺复合物的应用,transactacticinide Elements。参考:核化学引入,放射性和测量,放射性序列,半衰期,核衰减,伯特的核过程符号,核反应的类型,核裂变。
在1968年,MIT的Adolfo Guzman构建了程序,以检测场景的组成对象(“视觉场景中三维对象的计算机识别”,1968年)。Max Clowes(1971年,“看事物”)在UC Santa Cruz大学的David Huffman(“不可能的对象”(“不可能的对象)作为胡说八道的句子”,1971年)独立发现了解释Polyhedra的图片(固体图片)(Cubes and Pyramids和Alan Mackworth a Susex of Sussex of Sussey'''多面体场景”,1973年)。计算机视觉主要是在图片中识别对象,最初,主要的方法是将图片区域与典型对象的模板进行比较。Martin Fischler和Robert Elschlager在Lockhead的Palo Alto研究实验室使用“可拉伸模板”扩展了这种方法(“图形结构的表示和匹配”,1973年)。Takeo Kanade于1973年毕业于京都大学,毕业于世界上第一个自动化的面部识别系统(“计算机复杂的图片处理系统和人类面孔的识别”,1973年)。
多面体蛋白纳米局量作为疫苗平台取得了很大的成功(1-3),并且是生物制剂递送的有前途的车辆(4-7)。因此,人们对设计能够显示大量抗原或包装更大的更大的碳的更大且更复杂的结构有很大的兴趣。然而,常规的多面体是所有亚基都具有相同局部环境的最大闭合结构(8-11),因此访问更大,更复杂的封闭结构需要打破局部对称性。病毒通过在独特的环境(伪对称)(12)中放置化学不同但结构上相似的链条或利用相同的亚基来解决这个问题,或者利用在不同环境中采用不同构象的相同亚基(准对象)(13-15)(13 - 15),以访问具有更高的三角形(T)数量(13)结构(13),具有较大的亚基和互联剂和较大的子燃料。设计更大,更复杂的纳米焦点的一种有希望的途径是从定期的多面体纳米局(t = 1)开始,该纳米局(t = 1)是由对称的同构构构建块构建的,这些构建块的分离式环状布置是通过在假异构的异构体中代替这些构建块的隔离循环排列,然后通过将t = 4和大型结构与其他结构结合在一起,并与这些其他结构相结合。在这里,我们提供了这种设计方法的高级几何概述,以说明如何使用设计多样性和设计经济之间的权衡方向来实现不同的设计成果,正如在两篇随附的论文中实验证明的那样,Lee等人(16)和Dowling等人(17)。
范围。优化问题的很大一部分等同于优化线性程序,其中可行区域是由线性不等式定义的多面体。解决此类问题的复杂性受到多面体结构的很大影响。尤其是当多面体是整数时,众所周知,我们可以在多项式时间内解决问题的大小[7]。实际上,最有效的算法之一仍然是Dantzig开发的单纯形方法。即使该方法以不良的理论性能而闻名[8,9],它已经看到了新的兴趣和几种理论进步[5],特别是最近的一些发展,连接了多面体的结构以及该算法的效率[1]。该算法的另一个兴趣点是与问题本身的多面体结构的密切联系。尤其是,影响单纯形算法性能的一个关键因素是多面体直径,它限制了最坏情况下所需的枢轴数量。在这种情况下,赫尔希猜想的弱形式已被证明对由完全单型矩阵定义的多型植物有效[2,6]。box-tdi polyhedra是可以用box-tdi系统描述的多面体。这些多面体直接概括了由完全单型矩阵描述的多面体[3]。此外,即使整数线性编程最近已被证明在Box-TDI Polyhedra上是NP-HARD [4],当此Polyhedra是整数时,该主题尚未探索。该项目的主要目的是研究Box-TDI Polyhedra是否承认直径范围的改善,以及这是否对线性编程算法的效率有影响。
图1。(a)立方GD 3 SE 4的晶体结构,由右图中描绘的GDSE 8多面体组成。(b)正骨GD 2 SE 3的晶体结构,由两个不同的GDSE 7多面体单元(右图)组成。GD和SE由热椭圆形显示,从结构细化中提取。rietveld结构的完善(a)立方GD 2.84 SE 4和(b)正骨GD 2 SE 2.98的同步子X射线衍射模式的细化。插图显示了拟合的相应优点,r p,r wp和r exp。
deta nonoates¼二乙烯胺N-二核酸酯; gsh¼谷胱甘肽; gsno¼s -Nitrosoglutathione; HASMC¼人主动脉平滑肌细胞; Huasmc¼人脐动脉平滑肌细胞; HUVEC¼人脐静脉内皮细胞; MOF¼金属有机框架;无¼一氧化氮; NP¼Nanoparpicle; pCl¼Poly(ε-丙二酮); pCl/pk¼poly(ε -caprolactone)/phos -phobetaination phobetaination jeratin; poss-pcu;多面体寡聚西锡烷烷烷基聚氨酯氨基甲酸酯; rsno¼s-亚硝基硫醇; SMC¼平滑肌细胞; Snap¼s-硝基 - N-乙酰苯胺胺; VSMC¼血管平滑肌细胞。