地球大气中声音的传播是一个复杂的物质,因为它始终不断变化的风和温度条件受到影响[1]。任何意图合成特定声音场室外的系统的设计,无论是为了准确复制声音还是控制,都必须至少必须意识到这种影响。最终目标是设计一个从户外音乐会取消声音的声场控制系统[2,3],我们在这项工作中实验研究了大气条件变化对扬声器传递功能的影响,该功能在较远的距离下测得。传递函数的可变性是估计静态和自适应声音轨道控制系统的鲁棒性和性能的关键因素。像地球大气这样的复杂介质中声音的传播是一个经过深入研究的范围(参见例如[1]进行严格的理论处理)。但是,有
摘要:大气中声音的传播受许多因素的影响,例如空气温度,相对湿度,空气速度和方向以及温度反转。声音强度在大气吸收和大气湍流的距离方面消失。很多次,在不同的大气条件下,很难确定等效声压水平(a)的值。识别由大气条件引起的变化而言,首选使用程序进行数学建模。在各种大气条件下的等效声压水平(a)的测量值的差异并不重要。在比较声音传播的有利和不利的大气条件时,等效声压水平的值(a)的值可能高达10 dB。显然在这些测量的条件下,例如相对湿度<95%,空气速度<3 m.s -1。本文旨在使用使用软件CADNA A对不同大气条件的影响进行建模,该软件用于外部噪声图的数学建模。
反向传播这一术语源自一篇题为“通过反向传播误差学习表征”的原始文章(Rumelhart 等人,1986 年)。这是一种机器学习算法,可调整神经网络中连接的权重,以最小化网络实际输出向量与期望输出向量之间的差异(误差)的度量。在神经科学中,术语“反向传播”是指在轴突小丘区域产生的动作电位向后传播到该神经元的输入端(突触后末端或树突棘)。还观察到,循环侧支将神经元的输出带到其输入区域。这并不一定会导致误差校正;相反,它会加强特定神经元的激发。此外,突触连接不允许动作电位从突触后末端(输入区域)跨越到突触前末端(带来传入信号的神经元的输出区域)
ZN、GL 和 DLRM 为研究的各个方面做出了贡献。ZN、DLRM、DSJ、SDP、GOH 和 AB 进行了原位同步加速器 XCT。ZN 和 DLRM 进行了电解质盘的制备和电池组装。ZN、DLRM、CG 和 XG 进行了在线质谱分析。ZN、DLRM、BH、BL 和 JB 进行了等离子体 FIB 成像。DLRM 和 JB 使用 SIMS 进行了等离子体 FIB 成像。ZN、DLRM、JP、JL 和 DEJA 进行了微悬臂和机械测试的准备。GL、YC 和 CWM 进行了建模。ZN、GL、DLRM、DSJ、RIT、PSG、DEJA、TJM、CWM 和 PGB 讨论了数据。所有作者都对数据的解释做出了贡献。ZN、DLRM、GL、CWM 和 PGB 撰写了
∗ 我们感谢编辑 Toni Whited、匿名审稿人 Viral Acharya、Tania Babina、Jill Cetina、Miguel Faria-e-Castro、Mariassunta Giannetti、Michael Gofman、Ivan Ivanov、Victoria Ivashina、Huiyu Li、Nicola Limodio、Vojislav Maksimovic、Andreas Milidonis、Camelia Minoiu、Patricia Mosser、Andreas Papaetis、Brian Peretti、Andrea Presbitero、Julien Sauvagnat、Antoinette Schoar、Stacey Schreft 和 Jialan Wang 提供的极其有用的评论。我们还要感谢 2021 年 NBER 公司金融春季会议的与会者;伦敦经济学院;2020 年联邦储备系统金融机构、监管和市场会议;2020 年 OFR/克利夫兰联储金融稳定会议;欧洲复兴开发银行;美国联邦储备委员会;纽约联储;萨塞克斯大学;2020 年意大利银行/美联储非传统数据和统计学习会议;2020 年欧洲银行管理局政策研究研讨会;第三届金融中介和公司金融无尽夏季会议;2021 年 SGF 会议;意大利银行;慕尼黑大学 ifo 研究所;柏林洪堡大学;本特利大学;布拉特尔集团;弗吉尼亚大学达顿分校;巴布森学院;马萨诸塞大学阿默斯特分校;2021 年美联储压力测试会议;第四届 CEMLA 金融稳定会议;以及 2021 年 IBEFA 夏季会议的建议。我们还要感谢 Chris Florackis、Christodoulos Louca、Roni Michaely 和 Michael Weber 分享有关公司级网络安全风险的数据,以及 William Arnesen 和 Frank Ye 提供的出色研究协助。本文表达的观点为作者的观点,并不一定代表纽约联邦储备银行、联邦储备系统理事会或其其他工作人员的观点。电子邮件:matteo.crosignani@ny.frb.org;mmacchiavelli@isenberg.umass.edu;andre.f.silva@frb.gov。
第七章 - 新的传播模型 146 7.0 简介 146 7.1 平边模型 146 7.1.0 简介 146 7.1.2 示例计算 150 7.1.3 标准化属性 151 7.1.4 切向入射 152 7.1.5 包含最终建筑物衍射 153 7.1.6 平边模型的特点。 155 7.1.7 频率变化 158 7.1.8 远程基站模型 159 7.1.9 结论 161 7.2 边缘减少技术 162 7.3 混合预测模型 166 7.3.0 简介 166 7.3.1 模型描述 166 7.4 位置可变性 169 7.4.0 简介 169 7.4.1 基础知识 169 7.4.2 先前的工作 170 7.4.3 建筑物高度分布 171 7 .4.4 单个建筑物高度变化 172 7.4.5 多个建筑物高度变化 174 7.4.6 总结 176 7 .5 结论 176
伊利诺伊州7 - 45威斯康星州内布拉斯加州17 - 52俄亥俄州圣密歇根州49 - 24 Minnesota Iowa 20 - 24 Purdue Penn St. 35 - 36 Indiana Rutgers 38 - Michigan St.
Corresponding Author: ubongukommi@aksu.edu.ng , +2347032465163 Date Submitted: 01/08/2022 Date Accepted: 05/01/2023 Date Published: 20/11/2023 Abstract : Rural telephony is challenging in the remote part of Nigeria due to inadequate telecommunication infrastructure, exorbitant cost of communication systems and较差的道路网络扩展光纤网络。这些因素在许多村庄中构成贫困或没有蜂窝网络服务。另外,使用电视空间(TVWS)技术通过超高频(UHF)促进农村地区的电话服务,并且非常高频(VHF)频谱具有成本效益。因此,该研究研究了高程角对UHF/VHF频率处信号传播的影响。实验测试方案在不同的高程角度测量了接收的信号质量性能并传输功率水平,以获得更稳定的结果以进行实质性推断。实验测试方案考虑了一个通信链路,以436 MHz的UHF频率运行。在实验过程中,通信连接的方位角和传播损失保持恒定,而接收天线高度角度则变化以评估高程角度的影响。在实验期间获得的评估结果。比较在零(0 0)高程角处接收的信号质量性能,已经观察到,当发射功率分配增加时,接收的信号质量会提高。是从实验结果中得出的,即接收天线的高度角度对接收的信号质量性能有重大影响。结果进一步表明,在给定的发射功率水平为34dBm,在零(0 0)高程角度测试配置时,获得了1.80 dB的信号质量性能,在30 0时在30 0高度角度和10.9 dB时在60 0高度上获得10.9 dB,相比在0 0升高时(0 0升高),在30 0 0.9.90 0.9.90 db时获得了高度的质量性能,发射功率水平增加到46.98 dBM。这种见解在使用TVWS频率的农村电信服务的设计和网络计划中非常有用,以改善农村宽带渗透率。关键字:天线,高程角,超高频(UHF),电信和非常高的频率(VHF)。
摘要 - 对象检测和多个对象跟踪(MOT)是自动驾驶系统的重要组成部分。准确的检测和不确定性量化对于诸如感知,预测和计划之类的车载模块至关重要,以提高自动驾驶汽车的安全性和鲁棒性。已提出协作对象检测(COD)来提高检测准确性并通过利用多种代理的观点来降低不确定性。但是,很少关注如何利用COD的不确定性量化来增强MOT性能。在这封信中,作为解决这一挑战的第一次尝试,我们设计了一个称为Mot-Cup的不确定性传播框架。我们的框架首先通过直接建模和共形预测来量化COD的不确定性,并将这些不确定性信息传播到运动预测和关联步骤中。MOT-CUP旨在与不同的协作对象检测器和基线MOT算法合作。我们在V2X-SIM上评估了MOT-CUP,这是一个全面的协作感知数据集,并证明了准确性和2的提高2%。67倍不确定性的降低,例如排序和字节式。在以高阻塞水平为特征的情况下,我们的Mot-Cup表现出4.01%的提高ininaccuracy.mot-cupdemonstheimportheimportsheimportal cod和Mot中不确定性量化的持续性,并提供了基于不确定的Mot的准确性和降低基于Mot的预定率的尝试,并提供了第一个尝试。