20教授Jamari博士,St,MT,IPU Diponegoro University diponegoro University Dual Emarition的Diponegoro University diponegoro University dubibility total Hip假体的设计与开发可容纳穆斯林祈祷运动
UCI 的 TAVR CT 方案包括心电门控心脏 CT 扫描和全身 CT 血管造影,可用于评估主动脉瓣、主动脉根部和冠状动脉以及管腔大小。它还评估主动脉和髂动脉或锁骨下动脉的曲折度,以便制定 TAVR 手术入路计划。UCI 最先进的多层 CT 扫描仪具有 256 个探测器和 0.27 秒机架旋转,具有高空间和时间分辨率,心电门控可实现对主动脉环的最先进评估。该 CT 扫描仪对主动脉瓣和根部解剖结构的高度可靠描绘可用于适当选择瓣膜假体尺寸,这对于预防潜在的术后并发症(如假体栓塞或瓣周反流)至关重要。
摘要 综述目的 本综述旨在强调与仿生肢体和体感反馈恢复相关的多感觉整合过程日益增长的重要性。 最新发现 通过神经刺激恢复准现实感觉已被证明可为肢体截肢者带来功能和运动益处。近期,与人工触觉相关的认知过程似乎在假肢的完全整合和接受中发挥着至关重要的作用。 摘要 仿生肢体中实现的人工感觉反馈增强了截肢者对假肢的认知整合。多感觉体验是可以测量的,必须在设计新型体感神经假体时予以考虑,其目标是为假肢使用者提供逼真的感觉体验。正确整合这些感觉信号将保证更高水平的认知益处,从而实现更好的假肢并减少感知到的肢体扭曲。
摘要 综述目的 本综述旨在强调与仿生肢体和体感反馈恢复相关的多感觉整合过程日益增长的重要性。 最新发现 通过神经刺激恢复准现实感觉已被证明可为肢体截肢者带来功能和运动益处。近期,与人工触觉相关的认知过程似乎在假肢的完全整合和接受中发挥着至关重要的作用。 摘要 仿生肢体中实现的人工感觉反馈增强了截肢者对假肢的认知整合。多感觉体验是可以测量的,必须在设计新型体感神经假体时予以考虑,其目标是为假肢使用者提供逼真的感觉体验。正确整合这些感觉信号将保证更高水平的认知益处,从而实现更好的假肢并减少感知到的肢体扭曲。
摘要 摘要 人类肢体或器官的丧失仍然是一个挑战,尤其是在人们不断依赖触摸屏和任务的世界中。因此,患者几乎无法承受和应对因这种丧失而遇到的越来越多的限制。现代手段和技术,如先进的人工部件,减少了对残疾或失去肢体或器官的患者的限制。例如,手部假肢为改善人体肢体的功能能力提供了强有力的工具,从而提高了使用者的生活质量。然而,使用假肢的患者仍然遇到许多问题,例如,遭受完整的肢体和背部疼痛、假肢系统成本高以及与假肢性能相关的困难、控制不佳和更新困难。基于上述问题,目标是设计一种由重量轻的重型塑料制成的 3D 仿生手臂。目的是使用伺服电机代替步进电机,以减少延迟和减轻重量。目的还在于设计一个基于人工智能 (AI) 的仿生手臂程序,该程序可以进行修改以用于未来的目的,例如添加新手势和优化系统控制。新设计包括 3D 打印手臂、控制设计、测试电机和 EMG 传感器、选择具有成本效益的部件、模拟和最终确定真实原型。结合直接执行运动机制和仿生假肢的全尺寸模型,该开发旨在用于上肢的医疗康复。实验结果包括开发一个真正的基于 AI 的系统来定制使用神经网络控制的手势。结果还包括保持 EMG 传感器的准确和干净的读数。此外,新的仿生假肢手臂确保性能不会延迟,模仿手的正常功能。结果还表明,我们的设计在成本效益方面超越了现有的设计,前提是在其他几个规格上它是可比的。设计灵活且基于人工智能控制。作为未来的展望,可以在新的基于人工智能的设计中测试更多的算法,并测试更多的手势。
简介:本研究研究了基于实际点的髋关节置换手术中使用机器人工具的使用。这项研究的目的是评估具有自动移植物上颌前进的一件式Lefort I截骨术的骨骼稳定性。近几十年来,在科学和技术进步的帮助下,手术已成为一种治疗方法,并且将电气机器人用作最先进的第三代微创手术,该手术具有非常高级的远程手术系统,正在研究多次。方法:除了指电子搜索和审查中发现的论文外,还彻底搜索了医疗资源的最相关和最重要的医疗资源数据库,例如Google Scholar和Cochrane Cenral。审查了他们的消息来源,并进行了手动搜索,并在必要时与专家进行了沟通。搜索,使用了合适的术语(网格,免费文本)。的发现:结果表明,由于股骨头假体和茎假体的圆锥体区域之间存在多个剪切力,由摩擦引起的腐蚀以及两者之间的界面磨损引起的腐蚀,这被认为是尖端的,从而导致金属离子和颗粒的产生。结论:从现有金属表面释放出非常细腻的释放,它放置在髋关节的聚乙烯衬里上,这本身会导致金属差,骨骨溶解和假体稳定性损失等后果。此外,髋关节置换后的肢体长度差,THA(总髋关节置换术)是一种常见的并发症,会影响患者对关节置换的满意度。
神经假体系统包括神经/肌肉刺激器和神经记录电路。该系统中的这些刺激器和记录器几十年来广泛应用于许多医学领域,如人工耳蜗/视网膜假体、细胞激活和心脏起搏器[1–5]。功能上,神经刺激用于激活假体,唤醒感觉功能[6],而神经记录可以感知神经信号或完成刺激效果的评估[7–9]。将神经刺激器和神经记录器结合起来,形成闭环控制的同步神经记录和刺激系统,以恢复受伤个体的基本功能[10–16],例如用于癫痫发作检测和抑制的系统[17,18]。如图1所示,在用于癫痫发作检测和抑制的闭环神经记录和刺激系统中,神经记录用于检测脑内的癫痫信号,电刺激用于
涉及大脑视觉区域的电刺激会产生被称为光幻视的人造光感知。这些视觉感知在先前涉及皮层内微模拟 (ICMS) 的研究中得到了广泛的研究,并成为开发盲人视觉假体的基础。尽管已经取得了进展,但在实施功能性 ICMS 进行视觉康复方面仍然存在许多挑战。对主枕叶进行经颅磁刺激 (TMS) 提供了一种非侵入性产生光幻视的替代方法。盲人面临的一个主要挑战是导航。在科学界,评估视觉假体辅助导航能力的方法一直被忽视。在本研究中,我们调查了唤起侧向光幻视以在计算机模拟的虚拟环境中导航的有效性。更重要的是,我们展示了虚拟环境和视觉假体的开发如何相互关联,使患者和研究人员都受益。使用两个 TMS 设备,将一对 40 毫米的 8 字形线圈放置在每个枕半球上,从而产生单侧光幻视感知。参与者的任务是使用外围设备根据存在光幻视的视觉半场进行一系列左转和右转。如果参与者能够准确地感知所有十个光幻视,则模拟目标能够前进并完全退出虚拟环境。我们的研究结果表明,参与者可以解释单侧光幻视,同时强调基于计算机的虚拟环境的集成以评估视觉假体在导航过程中的能力。
摘要在本文中,MyFlex-ϵ是一个配备轻巧可调节的机制的ESR脚假体,允许在矢状平面中改变其刚度,并采用系统的方法来计算其旋转速度曲线。通过使用二维(2D)有限元(Fe)模型进行数值进行的实验设计,实验校准的几何参数,其变异改变了最初以不变刚度的矢状平面刚度的变化,以不可差的刚度设计,myflex-δ。构建机理并将其集成到myFlex-δ中以获得myFlex-ϵ,通过等效的测试,确定了后者的位移曲线曲线,确定了与ISO 10328中指定的静态测试的测试。基于实验结果,构建和校准了myFlex- ϵ的2D FE模型,以确定其矢状平面中的旋转态曲线。比较最符合的设置获得的旋转曲线与最僵硬的设置,固体变化为119%,122%,138%和162%,分别为 - 5°和 - 2.5◦和 - 2.5°,以及反向反射的角度,分别为7.5°和15°。