甘 迪,黄 辉,李承智,等 .脑机接口对义指精细动作控制的研究进展 [ J ] .中国临床医学 , 2025, 32(1): 114-119.GAN D, HUANG H, LI C Z, et al.Advances in research on fine motion control of prosthesis fingers with brain-computer interface [ J ] .Chin J Clin Med, 2025, 32(1): 114-119.DOI: 10.12025/j.issn.1008-6358.2025.20241119
肌肉骨骼感染(MSI),包括人造关节感染(PJI)和与骨折相关感染(FRI),在现代创伤和骨科手术中仍然是毁灭性的并发症,具有重大的财务和心理成本,并具有严重的财务和心理成本,并增加了发病率(1,2)。PJI包含一系列感染,发生在不同的位置(例如髋关节,膝盖和肩膀)以及不同类型的假体(一线假体或修订假体,包括铰接假体,切除假体,假体 - 关节固定术和股骨全部)(3)。对于PJI患者,有必要避免死前的临床情况,因为经济截肢或髋关节脱落与灾难性功能结果有关。fri可以包括手术和非手术治疗的骨折。对于严重合并症或相关骨缺损的FRI患者中,大约3–17%,截肢是唯一的选择(4)。虽然大多数中心的PJI发生率在0.5%至2%之间(3,5),但周五的发病率从1%到30%,取决于损伤的严重程度(6)。鉴于人口老龄化,脆弱性骨折的数量越来越多,关节置换手术的增加,预计MSI的发生率只会在接下来的几年中增加(3)。与不发展这种并发症的患者相比,这些感染通常会导致功能障碍,活动能力有限和更高的死亡率,从而对患者和医疗保健系统造成严重负担(3,6)。管理概念由联合手术和抗生素治疗方法组成。由于这些感染与生物膜相关,因此治疗通常需要进行多次修订手术。这不仅是昂贵的,而且需要大量的时间和资源,与不开发星期五的患者相比,周五患者的医疗费用高达七倍(7)。
抽象引入调整下limb(LL)机器人假体控制是为了在步行过程中为每个人类佩戴者提供个性化援助的必要条件。假体佩戴者的适应过程是主观的,效率在很大程度上取决于一个人的心理过程。因此,除了物理运动表现外,假体个性化应该考虑佩戴者在步行过程中的偏好和认知表现。作为第一步,当佩戴者带着LL假体行走,确定差距和方法论方面并探索步行环境中的其他措施时,有必要检查当前的认知表现措施。在此协议中,我们概述了范围的审查,该审查将系统地总结并评估在没有LL假体的行走过程中的认知性能度量。方法和分析该审核过程将由开放式在线数据管理门户网站Cadima进行指导和记录。关键字搜索将在七个数据库(Web of Science,Medline,Biosis,Scielo引文指数,Proquest,Cinahl和Psycinfo)中进行,直到2020年,并补充了灰色文献搜索。检索的记录将由至少两个独立的审阅者在标题和提取级别上筛选,然后将其全文级别筛选。选定的研究将用于报告偏差。将提取有关样本特征,认知功能类型,认知措施的特征,任务优先次序,实验设计和步行设置的数据。结果将通过会议和期刊传播。伦理和传播本范围审查将评估先前发表的研究中使用的措施,因此不需要伦理批准。结果将通过审查与假肢行走时的认知措施的应用状态,并为制定步行过程中认知评估所需的认知评估措施奠定基础,从而有助于假体调整过程的发展。
0219-s骨关节的微创手术(错误)融合:医疗必要性和文档要求o门诊医院,门诊手术中心(ASC)和专业服务(ASC/非医师/非物理学家实践者) 15734年有必要单独的报销,因为皮瓣被认为包含乳房重建(19357-19364,19367-19369)或乳房假体(19340,19342)。o医师/非医师从业者(NPP)0207-脊髓刺激:医疗必要性和文档要求
改进上肢肌电假肢的努力通常旨在为肢体缺失者提供高度功能性 [1]。尽管技术进步,但与完整肢体相比,这些设备提供的功能有限,并且会施加高认知负荷,导致疲劳和沮丧 [2],这可能导致设备排斥 [3]。需要通过测量来直接评估认知负荷,以进一步了解在使用假肢期间如何有效地发展视觉运动行为。为此,脑电图 (EEG) 是理想的选择,因为它可以以高时间分辨率测量持续的神经活动。大脑中参与和与任务相关的区域的主动处理反映在 alpha 范围 (8-12 Hz) 内振荡幅度 (功率) 的抑制上 [4],[5]。熟练运动表现的发展特点是将处理资源有效分配给大脑中与任务相关的区域 [6]。最近,这种方法被用来证明与解剖手相比,使用假肢时头皮上检测到的阿尔法波功率有所下降,这反映了更有意识的控制 [7]。基于这项工作,我们提出了一个平台来评估使用假肢时的大脑动态。第一部分描述了为该平台创建的可定制、轻量级肌电假肢模拟器。第二部分描述了平台中使用的无线脑电图设备和分析。该项目已获得新不伦瑞克大学研究伦理委员会的批准 (REB #2019-098),所有试点测试均根据 REB 指南进行。最后,我们展示了反映功能抑制的皮质阿尔法波分布的试点数据,这可能表明认知负荷较高。
摘要:本研究探讨了为受伤或截肢后的患者实施智能假肢的可能性。脑机技术允许在大脑和外部设备之间获取和发送信号。然而,上肢假肢是一种相当复杂的工具,因为手本身具有非常复杂的结构,由多个关节组成。最复杂的关节无疑是位于拇指根部的鞍状关节。您需要展示足够的解剖学知识来构建一个易于使用且尽可能类似于人手的假肢。使用合适的软件创建合适的控制系统也很重要,以便与脑机接口轻松协同工作。因此,本工作中提出的解决方案由三部分组成,分别是:Emotiv EPOC + Neuroheadsets,由伺服器和 Arduino UNO 板(带专用软件)组成的控制系统,以及在三维图形程序 Blender 中制作并使用 3D 打印机打印的手假肢模型。这种由大脑信号控制的手部假肢可以帮助截肢后的残疾人和残肢部位神经支配受损的人。
摘要 目的 在通过脑机接口操纵假肢的过程中,皮质表面的分布式微刺激可以有效地向受试者提供反馈。这种反馈可以向假肢使用者传达大量信息,可能是获得假肢的精确控制和实施的关键。然而,到目前为止,人们对解码此类模式的生理限制知之甚少。在这里,我们旨在测试一种旋转光遗传反馈,该反馈旨在有效地编码假肢中使用的机器人执行器的 360° 运动。我们试图评估通过闭环脑机接口控制假肢关节的小鼠对其的使用情况。 方法 我们测试了小鼠优化虚拟假肢关节轨迹的能力,以解决奖励性伸手任务。它们可以通过调节初级运动皮层中单个神经元的活动来控制关节的速度。在任务期间,投射到初级体感皮层上的模式化光遗传刺激不断向小鼠传递有关关节位置的信息。主要结果 我们表明,小鼠能够在任务的主动行为环境中利用连续、旋转的皮质反馈。小鼠通过更频繁地检测奖励机会,以及通过将关节更快地移向奖励角区,并在奖励区停留更长时间,实现了比没有反馈时更好的控制。控制关节加速度而不是速度的小鼠无法改善运动控制。 意义 这些发现表明,在闭环脑机接口的背景下,可以利用具有优化形状和拓扑的分布式皮质反馈来控制运动。我们的研究直接应用于机器人假肢中经常遇到的旋转关节的闭环控制。 1. 简介
目前控制电动神经假体的方法是基于测量仍然存在的肌肉的肌电图 (EMG) 信号,或使用脑机或神经机接口概念来评估神经元模式,并从脑阵列、束内神经电极或组合脑电图/眼电图 (EEG/EOG) 设备中获取假体的命令 [1]。这些神经假体概念很有趣并且发展很快,尽管其中一些对用户来说是侵入性的或令人不适的,并且可能并不总是反映用户对智能但尽可能简单的假体的愿望,这些假体可以独立地连接、使用和控制[2]。一些令人鼓舞的非侵入性且低成本的方法已经开发出来,但它们中的大多数仍然需要扩展支持,例如当必须连接非侵入性 EEG/EOG 系统的电极时。在我们的新概念(图 1)中,患者唯一的界面是配备前置摄像头的光学透视眼镜 (OSTG) 的增强现实 (AR) 技术。手假肢可以是任何有源电动手假肢或机械臂。假手上附有标记,可以是(红外)发光二极管 (LED) 或胶点。如果
方法与结果:在 176 例接受 CRS 假体 TAVI 的连续患者中,7 例(3.9%)发生急性瓣膜脱位。对发生该并发症的患者的脱位机制和临床结果进行了全面分析。根据潜在机制,所有假体移位病例分为以下三类:1) 瓣膜植入后立即意外脱位(n=1;14.3%);2) 在圈套操作过程中脱位,以将 CRS 假体(下边缘 >10 毫米)重新定位在主动脉环下方,并伴有血流动力学显着的反流(n=4;57.1%); 3) 故意脱位,使用圈套手法进行,以应对冠状动脉口受损或严重假体漏气的情况,因为该装置部署得较高,密封性不佳,且存在瓣膜钙化(n=2;28.6%)。大多数病例发生在使用新型 Accutrak™(美敦力公司,美国明尼苏达州明尼阿波利斯)输送系统的早期体验中。在六名患者中,第二个 CRS 被植入到适当的位置。脱落的 CRS 功能正常,没有任何结构恶化、血栓形成或进一步远端移位的迹象,并完全贴合主动脉壁。任何患者均未报告血栓栓塞事件。