Pierrel S.P.A. Strada statale Appia 7 BIS 46/48 81043 CAPUA(CE)可能关注的是,我正在与我们收到的一封来自您公司的宣言信,请访问您的公司2023年2月23日。宣言信件是您的产品,Orabloc(Articaine HCI 4%和肾上腺素1:100,000和Articaine HCI 4%和肾上腺素1:200,000),用于在麻醉剂中添加石墨烯。您的声明信指出:“在起始材料的制造过程和皮尔雷尔的制造过程中,在任何步骤中都没有故意添加,使用或生产石墨烯”。您还指出:“使用拉曼和UV-VIS光谱进行的测试无法检测到小于1ppm的石墨烯含量”,并且“在拉曼光谱中没有信号或UV-VIS光谱中的趋势没有信号,可以强调,可以暗示浓度低于1ppm的浓度中的石墨烯存在。”我已将声明信附上供您参考。我之所以选择您的公司作为我个人对牙科麻醉的偏爱,是在我认为的宣言信中,您给我们提供了最佳回应,以此对您的麻醉剂没有。我特别喜欢您的声明字母指出您的产品不包含石墨烯,并且您以拉曼质谱测试的形式包括了证明。但是,这是西班牙阿尔梅里亚大学教授Pablo Campra博士的观点,拉曼质谱是一种不适当的测试,可以检查液体麻醉剂中污染颗粒的组成。坎普拉博士先前已经使用微拉曼光谱法完成了对共vid产物的研究,并发现未公开的石墨烯颗粒。在与坎普拉博士的通信中,他说:“只有拉曼在分散的纳米颗粒中是否存在石墨烯,必须一个一个一个一个一个分析。”含义,检查溶液中这些颗粒组成的唯一方法是使用微拉曼光谱法。The testing methodology is included here: https://www.researchgate.net/publication/355979001_DETECTION_OF_GRAPHENE_IN_COVID19 _VACCINES We have also received similar information from Stuart Lindsay, University, Regents and Carson Professor of Physics and Chemistry and Director of the Center for Molecule Biophysics at Arizona State University who呼应坎普拉博士的意见。Lindsay先生说:“我很惊讶地听到牙科麻醉剂中石墨烯的可能性。最近的一份研究论文(J.Mololocular Liquids Vol 366 P120301 2022)探索了在理论研究中使用石墨烯扩展小分子麻醉剂的释放时间。我不知道有任何实验研究。石墨烯确实在拉曼频谱中具有一些不同的特征,但是我怀疑您是否会在没有石墨烯存在的任何解决方案中看到它们。”在您的批准和我们的费用下,我们想委托西班牙阿尔梅里亚大学的坎普拉博士在您的Orabloc麻醉中进行微拉曼光谱测试,批号(10)230109大学希望您的祝福以进行测试。您的公司是否会通过使用Micro-Raman Spectroscopy Technique通过Almeria University的Campra博士对您的Orabloc麻醉(LOT:(10)230109)进行测试?请通过电子邮件回复至lundstrommanager@protonmail.com,吉姆·伦德斯特罗姆·伦德斯特罗姆(Jim Lundstrom Lundstrom)家庭牙科博士
参考:1。saba nf和al。他们是J运输生物体物理。2024; 118:22。rl和al。Oncol的未来。概述于2024年1月10日发布。3。Matzinger O,和Al。 Oncol Radio。 2015; 116:495 - 503。 4。 那个Q和al。 J但化学。 2011; 54:2714 - 26。 5。 thibault b和al。 SciRep。2018; 8:1862。 6。 sk和al。 免疫疗法。 2018; 10:787 - 96。 7。 女人C和Al。 临床译本。 2022; 15:55 - 62。 8。 yu h和al。 目标翻译的terget。 2020; 5:209。 9。 太阳X和Al。 oncool lanc。 2020; 21:1173 - 87。 10。 tao y和al。 EUR J癌。 2023; 183:24 - 37。 11。 vugyster y和al。 pharmacol the。 2024; 115:52 - 61。 披露:V。Nicolas-Metral,D。Spagline,N。Wiedmann,R。Crabbers,H。Births和C.与Debiopharm国际SA的报告。 E. Rouits,C。Riff, 德国达姆施塔特的KGAA。 y。Matzinger O,和Al。Oncol Radio。 2015; 116:495 - 503。 4。 那个Q和al。 J但化学。 2011; 54:2714 - 26。 5。 thibault b和al。 SciRep。2018; 8:1862。 6。 sk和al。 免疫疗法。 2018; 10:787 - 96。 7。 女人C和Al。 临床译本。 2022; 15:55 - 62。 8。 yu h和al。 目标翻译的terget。 2020; 5:209。 9。 太阳X和Al。 oncool lanc。 2020; 21:1173 - 87。 10。 tao y和al。 EUR J癌。 2023; 183:24 - 37。 11。 vugyster y和al。 pharmacol the。 2024; 115:52 - 61。 披露:V。Nicolas-Metral,D。Spagline,N。Wiedmann,R。Crabbers,H。Births和C.与Debiopharm国际SA的报告。 E. Rouits,C。Riff, 德国达姆施塔特的KGAA。 y。Oncol Radio。2015; 116:495 - 503。 4。 那个Q和al。 J但化学。 2011; 54:2714 - 26。 5。 thibault b和al。 SciRep。2018; 8:1862。 6。 sk和al。 免疫疗法。 2018; 10:787 - 96。 7。 女人C和Al。 临床译本。 2022; 15:55 - 62。 8。 yu h和al。 目标翻译的terget。 2020; 5:209。 9。 太阳X和Al。 oncool lanc。 2020; 21:1173 - 87。 10。 tao y和al。 EUR J癌。 2023; 183:24 - 37。 11。 vugyster y和al。 pharmacol the。 2024; 115:52 - 61。 披露:V。Nicolas-Metral,D。Spagline,N。Wiedmann,R。Crabbers,H。Births和C.与Debiopharm国际SA的报告。 E. Rouits,C。Riff, 德国达姆施塔特的KGAA。 y。2015; 116:495 - 503。4。那个Q和al。J但化学。2011; 54:2714 - 26。5。thibault b和al。SciRep。2018; 8:1862。 6。 sk和al。 免疫疗法。 2018; 10:787 - 96。 7。 女人C和Al。 临床译本。 2022; 15:55 - 62。 8。 yu h和al。 目标翻译的terget。 2020; 5:209。 9。 太阳X和Al。 oncool lanc。 2020; 21:1173 - 87。 10。 tao y和al。 EUR J癌。 2023; 183:24 - 37。 11。 vugyster y和al。 pharmacol the。 2024; 115:52 - 61。 披露:V。Nicolas-Metral,D。Spagline,N。Wiedmann,R。Crabbers,H。Births和C.与Debiopharm国际SA的报告。 E. Rouits,C。Riff, 德国达姆施塔特的KGAA。 y。SciRep。2018; 8:1862。6。sk和al。免疫疗法。2018; 10:787 - 96。 7。 女人C和Al。 临床译本。 2022; 15:55 - 62。 8。 yu h和al。 目标翻译的terget。 2020; 5:209。 9。 太阳X和Al。 oncool lanc。 2020; 21:1173 - 87。 10。 tao y和al。 EUR J癌。 2023; 183:24 - 37。 11。 vugyster y和al。 pharmacol the。 2024; 115:52 - 61。 披露:V。Nicolas-Metral,D。Spagline,N。Wiedmann,R。Crabbers,H。Births和C.与Debiopharm国际SA的报告。 E. Rouits,C。Riff, 德国达姆施塔特的KGAA。 y。2018; 10:787 - 96。7。女人C和Al。临床译本。2022; 15:55 - 62。8。yu h和al。目标翻译的terget。2020; 5:209。9。太阳X和Al。oncool lanc。2020; 21:1173 - 87。10。tao y和al。EUR J癌。 2023; 183:24 - 37。 11。 vugyster y和al。 pharmacol the。 2024; 115:52 - 61。 披露:V。Nicolas-Metral,D。Spagline,N。Wiedmann,R。Crabbers,H。Births和C.与Debiopharm国际SA的报告。 E. Rouits,C。Riff, 德国达姆施塔特的KGAA。 y。EUR J癌。2023; 183:24 - 37。11。vugyster y和al。pharmacol the。2024; 115:52 - 61。披露:V。Nicolas-Metral,D。Spagline,N。Wiedmann,R。Crabbers,H。Births和C.与Debiopharm国际SA的报告。E. Rouits,C。Riff,德国达姆施塔特的KGAA。y。致谢:作者感谢所有站点的志愿者,研究调查人员和研究人员参加这项研究。这项研究是由DeBiopharm International SA概念化和赞助的;自2021年12月以来,这项研究是由德国达姆施塔特默克KGAA的医疗保健业务(Crossref筹集者ID:10.13039/10000009945)赞助的。医学写作支持由Nucleus Global的Jamie Ratcliffe提供,并由德国达姆施塔特的Merck Kgaa的医疗保健业务资助。
方法设计,数据源和研究人群我们在美国退伍军人事务医疗系统中进行了差异分析,这是美国最大的综合医疗保健系统,拥有1255个医疗保健设施和1074个门诊站点。它包含18个区域卫生系统,称为退伍军人综合服务网络(VISNS),每个服务网络都有自己的卧床药房系统。退伍军人事务临床医生规定的药物几乎总是由退伍军人事务药店填写。VISN 17中的医疗和药房领导者,其中包括德克萨斯州的大多数退伍军人事务设施以及新墨西哥州和俄克拉荷马州的部分地区,开发了一项基于多组分药房的倡议,旨在减少PPI的过度使用,并于2013年8月至2013年8月将其推出Visn Wide。研究期跨越2009年2月至2019年1月,以捕捉实施前后4。5年的趋势。我们将研究期分为连续的六个月间隔。在每个间隔中,我们包括所有在前两年中至少与初级保健提供者进行两次访问的患者。我们使用退伍军人事务的公司数据仓库来获取人口统计,医疗,药房,实验室和住院/门诊遭遇数据。
我们表明,强的自旋三个中子 - 蛋白质相互作用会导致二极化质子发生在亚核密度和非零温度下的中子物质中。随着中子密度的增加,质子光谱从裸露的杂质到排斥的极性分支表现出平滑的交叉。该分支与一个有吸引力的极化分支共存。随着中子密度的增加,有吸引力的极性子在杜特隆形成方面变得稳定。对于两个相邻的质子,我们发现偏振子的影响和中子介导的吸引力足以诱导结合的二二二磷酸,这可能导致实验室和中子恒星中中子富含核的中子核心核中中子皮肤中的中子皮肤区域中的二溴二二磷酸形成。
荧光检测核轨迹是一种辐射测量方法,最初是由Akselrod和使用Al 2 O 3:C,Mg单晶的同事开发的(Akselrod等,2006a; Akselrod等,2006b),并成功地引入了应用程序的各个领域(Al.akselenber and kousselrodg,akselrodg and akselrodg and.220; akselrod等人,2006b)。 2018年; Akselrod和Sykora,2013年;在过去的几年中,发现另一种材料适合用作荧光核轨道检测器(FNTD):未含量的氟氟化锂晶体(Bilski和Marczewska,2017; Bilski等,2019b)。LIF中粒子轨迹的荧光成像的物理机制是基于创建的,这是通过电离颗粒F 2颜色中心在晶体晶格中的产生。这些中心用蓝光(在445 nm左右的波长)激发时,在红色光谱范围内发出光致发光(在670 nm处达到峰值)。使用荧光显微镜,使用高放大倍数和灵敏的数码相机,可以以低于1微米的分辨率对辐射轨道进行成像。轨道强度是从轨道发出的荧光灯的强度,取决于电离密度,即,即局部沉积的能量的量。lif晶体已成功地用于图像各种离子的轨道,从氦与铁不等(Bilski等,2019a)。对于质子,对于高能梁,像放射疗法中使用的光束一样,由于这些颗粒的电离密度较低,很难观察到原代质子的单个轨道。对质子辐照的LIF晶体的初步分析揭示了某些荧光轨道的存在,但仅以几乎没有分布的斑点的形式。 这些斑点的数量比撞击晶体上的质子数量低的数量级。 它们的荧光强度非常低 - 与伽马辐射产生的轨道的强度相似。 因此,很难确定观察到的轨道是由原代质子,能量降解的质子还是由某些二次颗粒产生的。 另一方面,众所周知,低能质子可能会产生完全不同的轨道,因为它发生在热中子辐照的LIF晶体中,其中由2.73 MeV 3 h核产生的轨道(中子的核反应与6 Li核的核反应的产物)可见(Bilski等人,2018年)。 因此,本工作的目的是更仔细地研究LIF FNTD在检测低能和高能量质子方面的能力。 该受试者不仅与放射疗法质子束的测量相关,而且与质子丰富的宇宙辐射的剂量计有关。对质子辐照的LIF晶体的初步分析揭示了某些荧光轨道的存在,但仅以几乎没有分布的斑点的形式。这些斑点的数量比撞击晶体上的质子数量低的数量级。它们的荧光强度非常低 - 与伽马辐射产生的轨道的强度相似。因此,很难确定观察到的轨道是由原代质子,能量降解的质子还是由某些二次颗粒产生的。另一方面,众所周知,低能质子可能会产生完全不同的轨道,因为它发生在热中子辐照的LIF晶体中,其中由2.73 MeV 3 h核产生的轨道(中子的核反应与6 Li核的核反应的产物)可见(Bilski等人,2018年)。因此,本工作的目的是更仔细地研究LIF FNTD在检测低能和高能量质子方面的能力。该受试者不仅与放射疗法质子束的测量相关,而且与质子丰富的宇宙辐射的剂量计有关。
结果:与对照组相比,最近的PPI和抗生素的综合作用[或AB+PPI = 17.51(17.48–17.53)]对CDI风险的效果强于个人效应[或AB = 15.37(14.83-15.93);或PPI = 2.65(2.54– 2.76)]。结果在前几个月内暴露不足。剂量 - 反应分析显示,暴露量增加与CDI风险相关[最近使用:或AB = 6.32(6.15–6.49);或PPI = 1.65(1.62–1.68)每个处方增加]。与没有复发的个体(RCDI)相比,最近[或AB = 1.30(1.23–1.38)]和先前[或AB = 1.23(1.16–1.31);或PPI = 1.12(1.03–1.21)]使用也影响了复发的风险,但两者之间没有显着相互作用。最近的大环内酯/林糖酰胺/链球菌素;包括硝基咪唑包括衍生物在内的其他抗菌剂;非苯甲霉素β乳糖酰和喹诺酮与CDI风险和复发性最强的关联,尤其是最近使用时。PPI最近和前面的使用都进一步增加了与几乎所有抗生素类别相关的CDI风险。
氢化酶(H 2 ASE)有效地将H +与H 2相互互换,其离职数(吨)(10 2 - 5 mol S -1)。1,2基于这些金属酶的活性位点存在的金属中心,三种类型的h 2 ASE在自然界中是已知的 - [Fe - Fe] H 2 ASE,[Ni - Fe] H 2 ASE和fe-fe-fe-H 2 ASE。3,4中,[Fe - Fe] H 2 ASE对H 2代的选择更具选择性,[Ni - Fe] H 2 ASE对H 2氧化是选择性的,而在氢化物受体/供体底物的前提中,仅Fe-H 2 ASE与H 2或产生H 2或产生H 2。5,6 [Fe - Fe] H 2 ASE活性位点的高分辨率X射线晶体结构表明,A Fe 2 S 2(CO)3(CO)3(CO)3(CN)2有机金属核心(2FE子站点)的一个铁中心附着于[Fe 4 s 4]通过铜氨基固醇(Schemine(Schemine 1a and B))。4,7,8键二甲基二硫代硫酸酯(ADT)部分桥梁之间的两个Fe 2 S 2 S 2(CO)3(CO)3(CN)2有机型tallic核心之间的桥梁。两个铁中心中的每个中心都与一个 - 配体和一个 - cn-配体协调。9,10 A - Co Gridges两者
的回忆设备,电阻取决于应用电信号的历史的电元素,是未来数据存储和神经形态计算的领先候选者。回忆设备通常依赖于固体技术,而水性回忆设备对于生物学至关重要 - 相关应用,例如下一代 - 一代大脑 - 机器接口。在这里,我们报告了一个简单的石墨烯 - 基于水的水性设备,具有长期和可调的内存,由可逆电压调节 - 诱导的界面酸 - 通过通过石墨烯选择性质子渗透来启用的基本平衡。表面 - 特异性振动光谱验证了石墨烯电阻率的记忆是否来自通过石墨烯的滞后质子渗透而产生的,这显然是从石墨烯/水界面上界面水的重组。质子渗透会改变石墨烯CAF 2底物上的表面电荷密度,从而影响石墨烯的电子迁移率,并引起突触 - 例如电阻率动力学。结果为开发实验性直发和概念简单的基于水解的神经形态电离的方式铺平了道路。
与“基础”慢性肾脏疾病(CKD)患者质子泵抑制剂(PPI)造成肾脏损伤风险有关的抽象客观证据仍然很少,尽管PPI使用通常与急性间质肾炎或入射CKD有关。,我们旨在调查PPI启动与CKD患者不良结果的风险之间的关联,而没有任何确定性的PPI使用指示。设计回顾性观察性研究。设置2009年至2017年的韩国国家健康保险服务数据库。参与者是CKD患者中新的PPI和组胺H 2-受体拮抗剂(H2RA)使用者的回顾性队列。患有胃肠道出血史或具有内镜或基于图像的上胃肠道评估的患者被排除在外。主要和次要结果措施遵循研究对象,以确定临床结果,包括死亡率,终阶段肾脏疾病(ESKD),心肌梗塞和中风。在调整多个变量后,使用COX回归模型测量了结果的HR。我们应用了治疗加权(IPTW)模型的逆概率来控制残留混杂因素。结果,我们总共包括1038个PPI和3090 H2RA使用者,没有确定性的治疗指示。IPTW加权的COX回归分析表明,与H2RA启动相比,PPI的起始与更高的ESKD风险相关(调整后的HR 1.72(95%CI 1.19至2.48)),而死亡率或心血管疾病的风险相似。在亚组分析中,多变量COX回归分析表明,PPI使用与ESKD的进展之间的关联在非糖尿病和低估计的肾小球过滤率(<60 mL/min/min/1.73 m 2)组中仍然显着,HR 1.72(调整后的HR 1.72(调整后CI 1.19至2.48)至2.48)和1.63(95%CI 1.19至2.48)和95%CI(95%)。在没有确定性指示的情况下,不建议使用PPI给药的结论开始,因为它们的用法与ESKD的较高风险有关。
摘要。药物诱导的hypomagnese- MIA是一种不利影响,具有严重和致命的结果。尽管罕见,但长期使用质子泵抑制剂(PPI)会导致由于肠道吸收受损而引起的低磁性症,这主要归因于通过瞬态潜在的潜在的野星蛋白6(TRPM6)和7(TRPM7)通道的瞬时镁的跨镁镁转移。然而,还报道了由于肠道claudins的下调而减少镁副细胞吸收。PPI诱导的低镁血症可引发其他伴随的电解质扰动,包括低钙病,低钙血症,低磷酸血症和低钠血症。在这里,我们报告了两例与PPI诱导的低磁性血症相关的多种电解质疾病,其临床表现为心脏节律,认知变化和癫痫发作。这些病例说明了需要长期使用PPI的患者中的血清镁水平,尤其是在老年人和患有肠胃不良综合症的患者中或服用循环利尿剂和噻嗪类药物。