• Ben Cannon,HECC 执行董事 • Ramona Rodamaker,HECC 副执行董事 • Jennifer Purcell,HECC Future Ready Oregon 主任 • Julia Steinberger,HECC 劳动力投资办公室主任 • Julie Brandis,俄勒冈州立大学战略伙伴关系执行董事 • Jonath Colon,Centro Cultural 经济发展副主任 • Pallavi Dhagat,俄勒冈州立大学电气工程与计算机科学教授 • Brady Gibbons,俄勒冈州立大学机械、工业与制造工程教授 • Benjamin Lawrence,英特尔人才规划与管理高级总监 • Sage Learn,波特兰社区学院学院关系执行董事 • Courtney Martin,英特尔公共事务总监 • Sarah Means,蒂娜·科特克州长办公室半导体经理 • Vince Porter,蒂娜·科特克州长办公室经济发展与劳动力顾问 • Kyle Ritchey-Noll,俄勒冈州商业委员会 • Carrie Weikel-Delaplane,波特兰社区学院前电子工程技术学院院长 •希尔斯伯勒市劳动力发展经理克里斯蒂·威尔逊 (Kristi Wilson) • 俄勒冈州商业委员会邓肯·怀斯 (Duncan Wyse) • 波特兰州立大学包容性创新助理院长张彤 (Tong Zhang)
• Andrew Fennessy,环境、土地、水资源和规划部 • Angela Avery,维多利亚州农业部 • Anita Smith,维多利亚州区域发展部 • Anthea Derrington,维多利亚州农业部 • Astrid O'Farrell,坎帕斯佩郡议会 • Austin Ley,莫伊拉郡议会 • Bec Caldwell,古尔本布罗肯 CMA • Brad Drust,中北区 CMA • Brian Thompson,环境、土地、水资源和规划部 • Carl Walters,古尔本布罗肯 CMA • Chris Nicholson,古尔本布罗肯 CMA • Chris Norman,古尔本布罗肯 CMA • Clare Kiely,环境、土地、水资源和规划部 • Colin Kalms,大谢珀顿市议会 • Craig Dyson,维多利亚州农业部 • Daniel Hughes,古尔本谷地水务局 • Daniel Irwin,古尔本默里水务局 • David Downie,迪肯大学 • David McKenzie,古尔本区域伙伴关系 • Dougal Purcell,维多利亚州农业部 • Geoff Turner,默里河流委员会小组 • 古尔本默里水务公司的 Graeme Hannan • 墨尔本大学的 Greg Harper • 古尔本 Broken CMA 公司的 Reynolds Farming 公司的 Helen Reynolds • Biomix 公司的 Ian Haddow • CVGT 公司的 Jason Russell • 默里乳业公司的 Jenny Wilson • 维多利亚州农业部的 Joel Pike • 环境、土地、水资源和规划部的 Kathy Richardson
量子信息技术提供了通过在量子计算机之间分布纠缠的安全渠道来实现未经原理的计算资源的潜力。Diamond作为可光学访问的旋转Qubt的主机,是一个领先的平台,可以实现扩展此类量子链接所需的量子存储节点。光子晶体(PHC)腔增强了光质的相互作用,对于分别用于存储和传达量子信息的旋转和光子之间的有效界面至关重要。在这里,我们演示了用薄膜钻石制造的一维PHC腔,分别具有1.8×10 5和1.6×10 5的质量因子(Q),是任何材料中实现的可见PHC腔最高QS。重要的是,基于常规的平面制造技术,我们的制造过程是简单且高收益的,与先前的复杂底切工艺相反。我们还展示了具有高光子提取效率的纤维耦合的1D PHC腔,以及单个SIV中心和在4 K时的此类腔之间的光学耦合,达到18。purcell系数。所证明的光子平台可能从根本上提高量子节点的性能和可扩展性,并加快相关技术的开发。
<区分雅各布·麦克斯韦·凯恩·玛丽亚连接泰勒·库西奥·贝克特·特雷弗·兰伯特·玛德琳·玛丽。 Aguissa A.小路易斯·李·摩尔玛丽亚·安吉拉塞缪尔·里德·德米特里·沃托的芦苇
Casper W. Andersen 1,† , 8,7,† , Abhijith Gopakumar 9:† , Saulius Graˇzulis Rignanese 7,† , Markus Scheidgen Stefano 20 , Claudia Draxl 15 , Suleyman In the 21st , Marco Esther 13:14 , Marco Fornari 22.13 , Patrick Huck 6 , Boris Kozinsky 26:27 , Arash A. 10,10,David Waroquiers 7,Chris Wolverton 9,Michael Wu 6和Xiaoyu Yang
通过纳米级天线将电磁能与亚波长的体积结合起来,可用于增强量子发射器的自发发射。以此目的,已经探索了金属和高折射率介电纳米颗粒的不同配置。在这里,我们对三种不同参数的平面金属,高折射率介电和混合纳米antennas进行了比较分析:purcell因子增强,辐射效率和方向性特性。我们将研究重点放在圆柱体二聚体的不同几何和材料组合上。由两种金纳米固定器制成的二聚体是改善自发发射的最有前途的候选者。虽然大多数以前的作品都关注纳米颗粒平面中散射发射的重定向,但我们提出的两个大金缸(r =λ / 4)的纳米结构将大部分辐射向上发射。这种效果是由于对谐振模式的强大四极电贡献。旨在进一步提高方向性特性,将其他硅纳米固定器用作散射辐射的董事,相对于没有董事的金二聚体,将方向性提高了2.4。总的来说,提出了由金二聚体和硅纳米颗粒组成的杂种结构,以增强单个量子点的自发发射并控制其发射模式。这项工作中显示的结果可能是有用的荧光增强或量子光子学中的。它们对于基于量子点和其他纳米级发射器的单光子来源的开发特别有趣。
积极的情绪是指一个情感家庭,其中包括幸福,娱乐,依恋爱,养育爱,敬畏和热情等(Shiota,Neufeld,Yeung,Yeung,Moser,Moser和Perea,2011年)。这些情绪具有重要的社会功能,促进方法行为,激励社会参与,促进新的社交联系(Fredrickson,2004年),并逆转由负面情绪引起的生理激活(Fredrickson&Levenson,1998)。一定程度的积极情绪反应性被认为是最佳的;太低或太高的水平可能是有问题的。例如,积极情绪过高的基础临床症状,例如阿内迪尼和抑郁症,而过高的水平会导致不适当的人际边界,风险危险和躁狂(Gruber,Harvey,Harvey和Purcell,&Purcell,2011年)。分布在情感上和情绪调节的分布式大脑系统协同行动,以产生观察到的积极情绪反应的水平(通常以面部行为,生理学和主观经验的变化来衡量)。因此,支持积极情绪的神经系统的损伤是否导致情绪柔和或强化的情绪应取决于解剖学损伤的基因座。通常,对情绪产生电路的损害应降低积极的情绪反应性,而对情绪调节电路的损害应削弱抑制作用,从而导致高度带来积极的情绪。长期以来一直在争论积极情绪在大脑中横向的程度。两条证据支持这一结论。While emotion generating sys- tems (i.e., projections from pregenual anterior cingulate cor- tex to the central nucleus of the amygdala, hypothalamus, and brainstem) initiate rapid emotional responses to positive emotional cues ( Saper, 2002 ), emotion regulating systems (i.e., ventrolateral prefrontal cortex, orbitofrontal cortex, dorso- medial prefrontal cortex, and pre/supplementary motor area), with connections to striatum, thalamus, and subthalamic nuclei, promote down-regulation of affective responding in ways that are commensurate with individual goals and the social context ( Aron, 2007; Ochsner & Gross, 2005; Wager, Davidson, Hughes, Lindquist, & Ochsner, 2008 ).有些人认为对积极和负面情绪的感知和表达存在正确的半球优势(Tucker,1981),但其他人则建议左半球在积极情绪中起着主导作用(Davidson&Fox,1982)。先前的研究得出的结论是,左半球损害通常会减少积极的情绪,而右半球损害通常会增加积极的情绪。在WADA的研究中,可以停用右半球(通过单侧氨基脂质注射杏仁钠)但保留左侧的左半球,患者经常表现出乐观和欢笑(Perria,Rosadini和Rossi,&Rossi,&Rossi,1961; Sackeim等,Sackeim等,1982)。同样,许多病变研究,但不是全部(House,Dennis,Warlow,Hawton和Molyneux,1990),发现右半球损伤通常会导致笑声和微笑(Gainotti,1972; Sackeim等,1982)。积极的情绪被认为在右半球损害或功能障碍的范围内持续存在,因为
阅读清单 [1] 物理科学基本数学方法;KF Riley 和 MP Hobson,剑桥大学出版社。 [2] 高等工程数学;E. Kreyszic,John Wiley & Sons(纽约) [3] 物理学家的数学方法;GB Arfken、HJ Weber 和 FE Harris,爱思唯尔 [4] 数学物理学,HK Dass 和 Dr. Rama Verma,S. Chand 出版。 [5] 数学物理学-I;Krishna K. Pathak 和 Sangeeta Prasher,Vishal Publishing Co,贾拉朗达尔(德里)。 [6] 电动力学导论,DJ Griffiths。 [7] 电和磁[包括电磁理论和狭义相对论],D. Chattopadhyay 和 PC Rakshit,2013 年,New Central Book Agency (P) Limited。 [8] 电、磁和电磁理论,S. Mahajan 和 SR Choudhury,2012 年,Tata Mcgraw。[9] Schaum 的《电磁学理论与问题大纲》,JA Edminister。[10] 电磁学,BB Laud,新时代国际出版社。[11] 费曼讲座第 2 卷,RP Feynman、RB Leighton、M. Sands,2008 年,培生教育。[12] 电和磁,Edward M. Purcell,1986 年,麦格劳希尔教育。[13] 电磁学要素,MNO Sadiku,2008 年。培生教育。[14] 电和磁,JW Fewkes 和 J. Yarwood,第 1 卷,1991 年,牛津大学出版社。
近年来,基于电路量子电动力学(cQED)的量子计算取得了进展。我们可以利用谐振器实现量子非破坏性测量,或者通过珀塞尔效应控制量子比特的衰减[1-4]。然而,由于光刻可扩展性,超导量子比特的数量不断增加,可能会达到有噪声的中型量子计算[5],芯片尺寸等限制使量子网络难以扩展。除了cQED,一个有希望扩大电路规模的候选者是波导QED,它有助于在远距离组件之间交换信息。我们可以在波导介导的相互作用系统中观察到一些光学现象,如电磁诱导透明(EIT)和法诺共振[6-10]。这些干涉效应取决于量子比特的频率失谐和位置,为量子存储和量子信息的应用带来希望。我们可以进一步将量子比特置于特定的分离中,实现原子级镜像或空间纠缠的流动光子[11,12]。然而,开放环境中的衰减损失限制了波导介导的门保真度。作为一种潜在的解决方案,一些基于“巨原子”的理论和实验引起了人们的关注[13-21]。在这里,量子比特与波导有多个连接点,并通过干涉效应防止退相干。这种设计也可以扩展到
wding@g.harvard.edu; loncar@seas.harvard.edu; ahigh@uchicago.edu摘要量子信息技术提供了通过能够在量子计算机之间分配纠缠的安全渠道实现前所未有的计算资源的潜力。Diamond作为具有光学上可访问的自旋量子的原子状缺陷的主机,是一个领先的平台,可以实现扩展量子链路范围所需的量子存储节点。光子晶体(PHC)腔增强了光 - 物质的相互作用,并且是分别用于存储和传达量子信息的旋转和光子之间有效界面的必要成分。尽管付出了巨大的努力,但是在钻石中,实现具有高质量因子(Q)和设计灵活性的可见PHC腔。在这里,我们展示了在最近开发的薄膜钻石中制造的一维PHC腔,分别具有1.8x10 5和1.6x10 5的Q因子,这是任何材料中实现的可见PHC腔最高的QS。重要的是,基于常规的平面制造技术,我们的制造过程是简单且高收益的,与以前依赖复杂底切方法的方法相比。我们还展示了具有较高光子提取效率的纤维耦合1D PHC腔,以及单个SIV中心和在4K处的此类腔之间的光学耦合,达到13。所展示的钻石薄膜光子平台将提高量子节点的性能和可伸缩性,并扩展量子技术的范围。简介