摘要:由SARS-CoV-2引起的COVID-19大流行已成为全球威胁。了解潜在机制和开发创新治疗方法极为紧迫。G-四链体(G4)是具有不同生物功能的重要非规范核酸结构。研究了SARS-CoV-2基因组中四个假定的G4形成序列(PQS)。其中一个(RG-1)位于SARS-CoV-2核衣壳磷蛋白(N)的编码序列区,已被证实可在活细胞中形成稳定的RNA G4结构。G4特异性化合物,如PDP(吡啶斯他丁衍生物),可以稳定RG-1 G4并通过抑制其在体内和体外翻译显着降低SARS-CoV-2 N的蛋白水平。该结果首次证明 SARS-CoV-2 中的 PQS 可以在活细胞中形成 G4 结构,并且其生物功能可由 G4 特异性稳定剂调节。这一发现将为开发针对 COVID-19 的新型抗病毒药物提供新思路。
猪血凝性脑脊髓炎病毒(PHEV),猪假拟南芥病毒(PRV),经典猪发烧病毒(CSFV)和日本的脑炎病毒(JEV)导致感染猪的神经学症状相似,及其对实验性诊断的差异性诊断。设计了四对特定引物和探针,分别针对PHEV N基因,PRV GB基因,CSFV 5'非翻译区域(5'UTR)和JEV NS1基因,并且开发了四倍的实时定量RT-PCR(QRT-PCR(QRT-PCR),以检测和分化的PHEV,pRV,pRV,pRV,pRV,pRV,&JEV。该测定显示高灵敏度,每种病原体的检测极限(LOD)为1.5×10 1拷贝/μL。该测定法仅检测到PHEV,PRV,CSFV和JEV,而没有与其他猪病毒交叉反应。测定内和测定间的变异系数(CVS)小于1.84%,可重复性很高。通过已发达的四倍体QRT-PCR测试了总共1,977个临床样本,包括组织样本和从中国广西省收集的全血样本,以及PHEV,PRV,PRV,CSFV和JEV的阳性率为1.57%(31/1,977),0.355%(7/1,1,97), (21/1,977)和0.10%(2/1,977)。也通过先前报道的QRT-PCR分析测试了这1,977个样品,这些方法的巧合率超过99.90%。发达的测定法被证明是快速,敏感和准确的,用于检测和分化PHEV,PRV,CSFV和JEV。
四重 DFCS 架构 RDFCS 设施设置 保证方法的互补性 多级测试基础 数字飞行系统生命周期架构 设计任务 增强型电传操纵控制律 基线系统架构 通道逻辑 转换图 同步谓词/转换网络 谓词/转换网络细节 谓词/转换网络 模拟输出 顶层软件控制图 DFCS 可靠性框图 飞机模拟框图 托盘化 DFCS 控制律框图 免费 RSS 飞机时间历史软件控制流程图 增强型 RSS 飞机时间历史多级测试 收尾自动测试方案 正常通道同步时间历史启动通道同步时间历史稳定性无俯仰速率增强响应稳定性无攻角增强响应
摘要:随着多电飞机 (MEA) 的发展,一个关键的研究领域是开发可靠、高效、质量轻且与当前和未来飞机的功率和多路复用要求兼容且相称的商业上可行的系统。在旋翼机中,采用多电系统(例如,取代传统的机械和液压系统)的速度被认为比固定翼飞机要慢得多。然而,最近有越来越多的证据表明,四联电动尾桨 (ETR) 是一种技术上可行的解决方案。本文介绍了支持为这种四联尾桨驱动器供电所需的四个独立发电机的最可靠配置的方法,并考虑了每个独立通道功率损耗导致的故障严重程度、目标可靠性设置和支持可靠性分析。得出的结论支持一种特定的混合串并联发电机配置,并确定了与变速箱可靠性相关的进一步工作,以支持配置的可靠性实现。
四重 DFCS 架构 RDFCS 设施设置 保证方法的互补性 多级测试基础 数字飞行系统生命周期架构 设计任务 增强型电传操纵控制律 基线系统架构 通道逻辑 转换图 同步谓词/转换网络 谓词/转换网络细节 谓词/转换网络 模拟输出 顶层软件控制图 DFCS 可靠性框图 飞机模拟框图 托盘化 DFCS 控制律框图 免费 RSS 飞机时间历史软件控制流程图 增强型 RSS 飞机时间历史多级测试 收尾自动测试方案 正常通道同步时间历史启动通道同步时间历史稳定性无俯仰速率增强响应稳定性无攻角增强响应
区域具有形成次级DNA结构的潜力,对DNA复制产生了频繁且显着的障碍,并且必须积极管理以保持遗传和表观遗传完整性。回复体如何检测和响应二级结构的理解很少。在这里,我们表明,在其C末端区域的真核重置,永恒的港口中叉式保护复合物的核心成分是先前未批准的DNA结合结构域,该结构域表现出与G- Qu-Qudruplex(G 4)DNA结构的结合。我们表明,该域有助于通过G 4形成序列维持过程复制,并具有相邻的PARP结合域的部分冗余。此外,这种永恒的功能需要与解旋酶DDX 11的相互作用和活性。永恒和DDX 11的丧失会导致G 4形成序列和DNA损伤的表观遗传不稳定性。我们的发现表明,永恒有助于重新分散体感知复制障碍G 4的形成的能力,并确保DDX 11通过DDX 11对这些结构的迅速解决,以维持过程中的DNA合成。
很快就出现了。In this context, inspired by the growing interest in quadruplex nucleic acid structures and their myriad puta- tive biological functions, the Thomas group made the first report on a “ quadruplex light-switch ” , identifying a dinuclear complex, [{Ru(phen) 2 } 2 (tpphz)] 4+ (tpphz = tetrapyrido[3,2- a :2 ′ ,3 ′ - c:3'',2“ - h:2''',3''' - j]苯胺,将螺纹伸入四鲁 - plex回路中,导致“切换”状态,比其非相互缩放的养殖型结合; 21效应也可以用于在双链体和四链体结构之间差异。22在接下来的几年中,已经报道了有关RU II复合物的大量研究及其与四链体和其他相关结构的相互作用。23 - 27
1) Watson, J.-D. & Crick, F.-H. (1953) 核酸的分子结构;脱氧核糖核酸的结构。Nature,171,737 ‒ 738。 2) Zhao, J.、Bacolla, A.、Wang, G.、& Vasquez, KM (2010) 非B型DNA结构引起的遗传不稳定性与进化。Cell. Mol. Life Sci.,67,43 ‒ 62。 3) Asamitsu, S.、Takeuchi, M.、Ikenoshita, S.、Imai, Y.、Kashi- wagi, H.、& Shioda, N. (2019) G-四链体结构在神经生物学和神经药理学中的应用前景。Int. J. Mol. Sci. , 20 , 2884. 4) Kumar, N., Sahoo, B., Varun, K.-A., Maiti, S., & Maiti, S. (2008) 环长度变化对四链体-沃森-克里克双链体竞争的影响。核酸研究。, 36 , 4433 ‒ 4442。5) Bhattacharyya, D., Mirihana Arachchilage, G., & Basu, S. (2016) G-四链体折叠和稳定性中的金属阳离子。前沿化学。, 4 , 38。6) Keniry, M.-A. (2001) 核酸中的四链体结构。生物聚合物,56,123-146。7) Yaku, H., Fujimoto, T., Murashima, T., Miyoshi, D., & Sugi-moto, N. (2012) 酞菁:一类具有许多潜在应用的新型 G-四链体配体。Chem. Commun. (Camb.),48,6203-6216。8) Patel, D.-J., Phan, A.-T., & Kuryavyi, V. (2007) 人类端粒、致癌启动子和 5′-UTR G-四链体:用于癌症治疗的多种高阶 DNA 和 RNA 靶点。Nucleic Acids Res. , 35 , 7429 œ 7455. 9) Joachimi, A., Benz, A., & Hartig, J.-S. (2009) DNA 与 RNA 四链体结构与稳定性的比较. Bioorg. Med. Chem. , 17 , 6811 œ 6815. 10) Zhang, A.-Y., Bugaut, A., & Balasubramanian, S. (2011) 分子内 RNA G-四链体稳定性与拓扑结构的环长依赖性序列独立分析. Biochemistry , 50 , 7251 œ 7258. 11) Phan, A.-T., Kuryavyi, V., Luu, K.-N., & Patel, D.-J. (2007)
极化转换是光子学和量子光学元件中现代应用的基础。尽管他们的应用兴趣,但仍需要基本的理论和实验努力来利用极化光学的全部潜力。在这里,我们揭示了琼斯矩阵的两个非正交特征态的连贯超级位置可以极大地提高与经典正交极化光学的任意极化变换的效率。通过用堆叠和扭曲的配方利用跨表面,我们实施了一种强大的配置,称为“非正交跨额叶”,并在实验上证明了任意输入输出偏转模式,以达到近乎100%的传输效率,以宽敞的宽带和角度增强范围和角度增强方式。此外,我们提出了一种路由方法,以投射具有四链循环圆极化成分的独立相全息图。我们的结果概述了一个强大的范式,以实现极有效的极化光学元件,以及在微波和光学频率下进行通信和信息加密的极化多路复用。