上下文。密度不均匀性在空间和天体物理等离子体中无处不在,尤其是在不同培养基之间的接触边界处。它们通常对应于在各种空间和时间尺度上表现出强大动态的区域。的确,密度不均匀性是一种可以驱动各种不稳定性的自由能来源,例如低杂交饮用的不稳定性,进而将能量通过波颗粒相互作用转移到颗粒并最终加热等离子体。目标。我们的研究旨在量化低杂交饮用不稳定的效率,以加速或热电子与环境磁场平行。方法。我们结合了两种互补方法:全运动和准线性模型。结果。我们报告了由低杂交饮用不稳定的3D-3V全动作数值模拟的发展驱动的电子加速度的自洽证据。观察到的加速度的效率无法通过标准的准线性理论来解释。因此,我们开发了一种扩展的准线性模型,能够在长时间尺度上定量预测低杂交闪光与电子之间的相互作用,现在与全动光模拟结果一致。最后,我们将此新的,扩展的准线性模型应用于特定的不均匀空间等离子体边界,即汞的磁化。此外,我们讨论了我们对电子加速度的定量预测,以支持未来的Bepicolombo观测值。
研究背景 本研究之前的证据 我们在 PubMed 上搜索了有关 COVID-19 疫苗接种对死亡风险的“现实世界”有效性的研究,使用术语包括“COVID-19”、“疫苗有效性”、“死亡率”和“死亡”。 关于这个主题的相关已发表研究报告,疫苗有效性估计值对死亡风险的范围从 64.2% 到 98.7%,在接种疫苗后的不同时间内不等。 所有这些都是观察性研究,因此可能受到未测量的混杂因素造成的偏差。 我们发现没有研究使用不连续回归设计等准实验方法(不受未测量的混杂因素偏差的影响)来计算 COVID-19 疫苗接种对 COVID-19 死亡风险或住院或感染等其他结果的有效性。 本研究的附加价值 基于观察数据对疫苗有效性的估计可能会因未测量的混杂因素而产生偏差。本研究采用不连续回归设计来估计疫苗有效性,利用了英国的疫苗接种运动是按照年龄优先群体开展的这一事实。这使得能够计算出 COVID-19 疫苗对抗死亡风险有效性的无偏估计值。疫苗有效性估计值为 70.5%(95% CI 18.2 – 117.7),与之前公布的估计值相似,因此表明这些估计值没有受到未测量的混杂因素的显著影响,并证实了 COVID-19 疫苗对抗 COVID-19 死亡风险的有效性。所有现有证据的含义获得 COVID-19 疫苗有效性的无偏估计对于制定解除 COVID-19 相关措施的政策至关重要。不连续回归设计提供了信心,即现有的观察性研究估计值不太可能受到未测量的混杂因素的显著影响。
1 加州大学河滨分校伯恩斯工程学院电气与计算机工程系纳米器件实验室,加利福尼亚州河滨市 92521,美国 2 波兰科学院高压物理研究所 CENTERA 实验室,波兰华沙 01-142 3 加州大学河滨分校伯恩斯工程学院材料科学与工程项目声子优化工程材料中心,加利福尼亚州河滨市 92521,美国 4 格但斯克理工大学计量与光电子系,波兰格但斯克 80-233 5 华沙理工大学 CEZAMAT 先进材料与技术中心,波兰华沙 02-822 6 蒙彼利埃大学和法国国家科研中心查尔斯库仑实验室,法国蒙彼利埃 34950美国加利福尼亚州里弗赛德市 92521
完整的作者清单:džiugas的Litvinas;维尔纽斯大学,物理学院,光子学研究所和纳米技术Aleksiejunas,Ramunas; Vilnius大学,Patrik的光子学和纳米技术学院物理学院; Vilniaus Universitetas,Baronas,Paulius;维尔尼乌斯大学,索里奥特,维瓦; Vilnius大学,Chuanjiang光子学和纳米技术学院物理学院;富希拉(Takashi)的聚合物物理与化学的国家主要实验室;信息技术和纳米技术(ISIT)Matsushima,Toshinori;京都大学,吉哈亚国际碳中性能源研究所ADACHI;九州大学,有机光子和电子研究中心(Opera)Jursenas,索利乌斯;维尔纽斯大学,应用研究所
通过引入新兴的准可观测物,在呈指数级的时间内保护定期驱动(FLOQUET)多体阶段中起着至关重要的作用,而此类准保存的操作员的最终命运可以信号热化温度。为了阐明多体浮雕系统中预构层的特性,我们在这里系统地分析可观察到的无限温度相关性。我们从数值上表明,自相关的后期行为明确地区分了准论可观察到的无保守的可观察结果,从而使一个人可以挑出一组线性独立的准论可观察物。通过研究两种浮标自旋模型,我们确定了准保存定律的两个不同机制。首先,当驾驶频率较大时,我们在数值上验证了能量准式使用,因此系统动力学大致由静态的prethermal hamiltonian描述。更有趣的是,在适度的驾驶频率下,如果Floquet驱动器包含较大的全局旋转,则仍然可以观察到另一个准观测。我们从理论上展示了如何计算可观察到的可观察到并提供数值验证。在系统地识别所有测序可观察到的情况下,我们可以使用从固态核磁共振系统中的数值模拟和实验中获得的自相关性,最终研究其行为。
其中,我们记为 σ µ = ( I, − σ i ) 和 ˆ σ µ = ( I, σ i )。σ i 是通常的泡利矩阵。在以下的讨论中,我们将处处使用外尔基。现在我们考虑能量为 E(可以为正数或负数)的狄拉克方程的稳态解,它们不过是 Ψ( x ) = e − i Et Φ E ( x )。这里,Φ E ( x ) 满足狄拉克方程 ( 1 ),只是 i∂ 0 处处被 E 取代。稳态提供了一个完整的基础,任何一般解 Ψ( x ) 都可以根据它展开。此外,它们帮助我们看到狄拉克方程的一个重要的内部对称性,称为电荷共轭对称性。如果 Φ(x) 是与能量 E 相关的状态,我们可以找到相应的电荷共轭态,定义为
针对多用户第五代应用,提出了一种非常规的准模块化基站相控阵架构综合技术。通过在最佳不规则阵列的元素处保持均匀的幅度和线性前进的相位,可以实现功率高效的旁瓣抑制,从而有效地减轻用户间的干扰。布局不规则性是在阵列切片内实现的,该切片以旋转方式重复。采用顺序旋转技术来获得模块化并改善圆极化特性。使用改进的 k 均值聚类算法来形成最佳子阵列。仿真结果表明,所提出的准模块化拓扑在旁瓣性能和集成阵列设计复杂性之间提供了良好的折衷。
作者:G Schirò · 2020 · 被引用 4 次 — 中子通过强核力与原子核相互作用,通过偶极-偶极耦合与磁矩相互作用。... 强核力并给出 ...
摘要 提出了一种用于纳米线晶体管 DC 和 RF 小信号模拟的数值框架,该框架基于泊松、薛定谔和玻尔兹曼传输方程的自洽解,并且在从弱到强粒子散射的整个范围内都是稳定的。所提出的方法不会因将玻尔兹曼传输方程变换到能量空间而产生缺陷,并且可以处理准弹道情况。这是研究等离子体共振和其他高迁移率现象的关键要求。内部求解器通过先前开发的基于 H 变换的模拟器的结果进行验证,该模拟器适用于具有强散射的传统 N + NN + 硅晶体管。然后,将其结果与基于矩的模型的结果进行比较,结果表明这些结果不能令人满意地描述准弹道传输状态下的电子动力学。此外,发现接触处传输模型的内部边界条件对等离子体共振有显著影响,而基于物理的热浴边界条件强烈抑制了它们。