3 Sanger。 F.,库尔森,AR。 «通过与DNA聚合酶启动合成来确定DNA中序列的快速方法。 J mol Biol。 1975;第25卷; 94(3):441–448。 4科学历史研究所。 [publupaciónenLínea]«re-Combinant-DNA(rDNA)技术»。 2017。 [Consulta:15/04/2019]。 5 Shampo,M.A。;凯尔(R. A.) «Kary B. Mullis,诺贝尔奖获得者,用于复制DNA»。 诉讼梅奥诊所。 2001;卷。 77:606。 6 Jinek,M.,Chylinski,K.,Fonfara,I.,Hauer,M.,Doudna,J. E. 科学。 2012;卷。 337,(6096):816–821。 7张,F。«使用CRISPR/CAS系统的多重基因组工程»。 科学。 2013;卷。 339,n。 6121:819-823。 8 Wang,H.,Yang,H.,Shivalila,C.,Dawlaty,M.,Cheng,A.,Zhang,F。,&Jaenisch,R。««由CRIS/CASPR/CASPR/CASPR/CAS介导的基因组启动中的多个基因中携带突变的小鼠的一步一代。 单元格。 2014; 153(4):910-918。3 Sanger。F.,库尔森,AR。«通过与DNA聚合酶启动合成来确定DNA中序列的快速方法。J mol Biol。1975;第25卷; 94(3):441–448。4科学历史研究所。[publupaciónenLínea]«re-Combinant-DNA(rDNA)技术»。2017。[Consulta:15/04/2019]。5 Shampo,M.A。;凯尔(R. A.) «Kary B. Mullis,诺贝尔奖获得者,用于复制DNA»。 诉讼梅奥诊所。 2001;卷。 77:606。 6 Jinek,M.,Chylinski,K.,Fonfara,I.,Hauer,M.,Doudna,J. E. 科学。 2012;卷。 337,(6096):816–821。 7张,F。«使用CRISPR/CAS系统的多重基因组工程»。 科学。 2013;卷。 339,n。 6121:819-823。 8 Wang,H.,Yang,H.,Shivalila,C.,Dawlaty,M.,Cheng,A.,Zhang,F。,&Jaenisch,R。««由CRIS/CASPR/CASPR/CASPR/CAS介导的基因组启动中的多个基因中携带突变的小鼠的一步一代。 单元格。 2014; 153(4):910-918。5 Shampo,M.A。;凯尔(R. A.)«Kary B. Mullis,诺贝尔奖获得者,用于复制DNA»。诉讼梅奥诊所。2001;卷。 77:606。 6 Jinek,M.,Chylinski,K.,Fonfara,I.,Hauer,M.,Doudna,J. E. 科学。 2012;卷。 337,(6096):816–821。 7张,F。«使用CRISPR/CAS系统的多重基因组工程»。 科学。 2013;卷。 339,n。 6121:819-823。 8 Wang,H.,Yang,H.,Shivalila,C.,Dawlaty,M.,Cheng,A.,Zhang,F。,&Jaenisch,R。««由CRIS/CASPR/CASPR/CASPR/CAS介导的基因组启动中的多个基因中携带突变的小鼠的一步一代。 单元格。 2014; 153(4):910-918。2001;卷。77:606。6 Jinek,M.,Chylinski,K.,Fonfara,I.,Hauer,M.,Doudna,J.E.科学。2012;卷。337,(6096):816–821。7张,F。«使用CRISPR/CAS系统的多重基因组工程»。科学。2013;卷。339,n。 6121:819-823。8 Wang,H.,Yang,H.,Shivalila,C.,Dawlaty,M.,Cheng,A.,Zhang,F。,&Jaenisch,R。««由CRIS/CASPR/CASPR/CASPR/CAS介导的基因组启动中的多个基因中携带突变的小鼠的一步一代。单元格。2014; 153(4):910-918。
使用编码Rubisco大型亚基,小亚基rDNA和组合数据矩阵的基因的系统发育分析,对ULVACEAE的系统假设进行了测试。使用最大放线和最大似然标准的分析中包括了来自Ulvophyceae和Trebouxio-Phyceae的八个推定的杜斯属和十二个添加物分类单元的代表。分子数据支持ulvaceae的假设,这些假设是基于营养性thalli和Motile Cell Ultrocureture的早期发展。Ulvaceae Sensu Floyd和O'Kelly,包括Percursaria bory de Saint-Vincent,Ulvaria Ruprecht和叶绿体Tanner的密切相关物种,Enteromorpha Link和Ulva L.但是,不支持肠孢和Ulva的单一属。Ulvales和Ulotrichales Sensu Floyd和O'Kelly是单一的。Blidingia Kylin和Kornmannia Bliding与前者和Capsosiphon Gobi结合了后者,尽管这些命令中的关系和其他分类单元之间的关系仍然没有。ULVALES的特征是同构的生命史模式,Gametangia和Sporangia,它们在结构和发育中相同,具有双重末端盖的运动细胞以及由两个相等亚基组成的近端鞘。流动细胞释放和营养性thalli的总形态不是系统上可靠的特征。
本研究从一种在菲律宾传统上称为 Balao-balao 的发酵米虾混合物中分离出乳酸菌。筛选乳酸菌菌株表明,10 种分离物对测试微生物表现出良好的抑制活性,即金黄色葡萄球菌 BIOTECH 1634、大肠杆菌 BIOTECH 1582、枯草芽孢杆菌 BIOTECH 1679 和哈维氏弧菌 SEAFDEC 010。感兴趣的是分离物 PL12,这是一种产生细菌素的菌株,对测试的病原体表现出最高的抑制活性。分离物 PL12 被鉴定为戊糖片球菌 (GenBank 登录号 MF353992),通过 16S rDNA 序列分析具有 100% 的相似性。排除有机酸和过氧化氢的影响,PL12 分离株的无细胞上清液 (CFS) 在琼脂孔扩散试验中表现出对测试病原体的强拮抗活性。这些结果证实了分离株的蛋白质性质,并表明了细菌素的典型特性。为了进一步浓缩 CFS 中的蛋白质,进行了硫酸铵沉淀,然后进行柱纯化(Sep-Pak C 18 筒式柱)。在测试的革兰氏阳性菌和革兰氏阴性菌中均观察到 PL12 细菌素的阳性拮抗作用。在每个纯化步骤中都发现对大肠杆菌的抑制活性最高。这些结果表明,产生细菌素的 PL12 分离株可以成为食品工业中一种有前途的防腐剂,也可以作为水产养殖中的益生菌,因为它具有对抗哈维氏弧菌的拮抗活性。
•螯合剂和缓冲液•中等优化•中等灭菌3。在工业范围内微生物的生长•微生物生长阶层的一般介绍•接种药物制备和发酵结构•测量微生物生长和微生物代谢物•搅拌和曝气•泡沫和pH控制•批次控制•批次发酵•发酵•发酵•发酵量。发酵•固态发酵4。工业微生物的开发•工业部落的安全•微生物培养收集•自然和元巨人学的部分•突变,基因工程和工业微生物的选择•用于随机突变微生物的技术•转化•Invivo重组•Invivo Recombination筛选技术筛查技术5。工业微生物的代谢失调和代谢工程•微生物通量的代谢控制和调节•代谢过多的微生物代谢产物过量生产•代谢工程和建模•合成生物学6。下游处理:发酵混合物的产品回收•生物质分离•离心•微滤•过滤•过滤•产品回收•提取•萃取•结晶•降水•蒸发•膜过程•色谱 div div>
背景:类似于高脂饮食(HFD),高血糖饮食(HGD)有助于2型糖尿病(T2DM)的发展和进展。然而,HGD对T2DM胃肠道运动及其潜在机制的影响尚不清楚。方法:将30个C57BL/6J小鼠随机指定为正常喂养饮食(NFD)组,HFD组和HGD组。检查了血浆葡萄糖,血浆胰岛素和胃肠道运动。同时,计算了分离的结肠平滑肌环的张力,并通过16S rDNA高通量测序分析肠道菌群。结果:在HGD喂养,肥胖,高血糖,胰岛素抵抗和便秘后16周后,HGD小鼠观察到。在HGD小鼠中,结肠神经肌肉系统和电场刺激引起的收缩的自主收缩频率降低。相反,发现神经元一氧化氮合酶活性和神经肌肉松弛得到增强。最后,肠道菌群分析表明,在HGD小鼠的家族水平上,杜鹃花的丰度显着增加。在属水平上,大量的甲状腺炎症显着增加,而HGD小鼠的毛核丰度显着降低。结论:HGD诱导肥胖糖尿病小鼠的便秘,我们推测它可能与神经肌肉功能障碍和肠道微生物群营养不良有关。
CRISPR/CAS系统作为基因组编辑的生物技术工具的应用已彻底改变了植物生物学。最近,曲目通过CRISPR-kill扩展,通过组织表达消除基因组,从而使CRISPR/CAS介导的组织工程能够。使用金黄色葡萄球菌(SACAS9)的Cas9核酸酶,CRISPR-kill依赖于保守重复基因组区域中多个双链断裂(DSB)的诱导,例如rDNA,从而导致靶细胞的细胞死亡。在这里,我们表明,除了组织特异性表达的空间控制外,在拟南芥中,CRISPR介导的细胞死亡的时间控制是可行的。我们建立了一个化学诱导的组织特异性杀伤系统,该系统允许通过荧光标记同时检测靶细胞。作为概念证明,我们能够消除横向根和消融根干细胞。使用多组织启动子,我们在某些发育阶段在不同器官的定义时间点诱导靶向细胞死亡。因此,使用此系统使得有可能获得对某些细胞类型的发育层的新见解。除了在植物中实现组织工程外,我们的系统还提供了一种宝贵的工具,可以通过位置信号传导和细胞间通信来研究开发植物组织对细胞消除细胞的反应。
Wang等11建立了脾脏缺乏和食物积累的小鼠模型,并将其用于测试MMF对胃排空速率,肠道推进率,血清胃胃中核心和胆碱酯酶活性的影响。微生物16S rRNA检测在不同的小鼠粪便中进行。MMF改善了胃排空速率,肠道推进率和血清胃蛋白浓度。对照和MMF处理的小鼠之间的胆碱酯酶活性没有显着差异。16S rRNA测序表明,MMF增加了细菌植物的丰度,并减少了模型小鼠肠道中ver ver肉眼的丰度。fan等人12利用了通过在腹膜内注射将来的RESERPINE成立大鼠的FD大鼠模型。MMF每天经过经胃。在治疗后,用病理染色和免疫组织化学的表达评估了胃胃,脾和十二指肠大鼠的标本。血清胃肠道激素水平。MMF改善了FD大鼠的组织学结构,并提高了胃胃肠道,脾和十二指肠中Motilin,Gas-trin和Ghrelin的血清水平,同时降低物质P(SP),VA- SOACTIVE Intestive Intestinal多肽(VIP)(VIP)和Cholecystokystokystokinin(ccck)。使用16S rDNA测序甲基元素用于评估实验大鼠的肠道菌群。多样性分析表明,MMF组比正常组比FD组更相似,这表明MMF可以恢复肠道微生物群。QZWT处理未能恢复f/b比的变化。在门水平上,小组之间的微生物群体主要物种没有显着差异。与对照组相比,FD组的丰度显着增加,MMF减轻了这一变化。恢复了振荡螺旋藻和ruminococcus。Bai等人13使用了使用碘乙酰胺和水位平台创建的FD大鼠模型,以进行睡眠剥夺。在评估了MMF处理后,评估了评估蔗糖偏好,胃排空率,十二指肠的组织学变化以及促炎性细胞因子的血清水平。该研究表明,MMF降低了TNF-α和IFN-γ的血清水平,改善了十二指肠肠绒毛的形态,并改善FD大鼠中肠粘膜粘膜层状层损伤,以及无散性的偏好增加,并且胃排空率降低了FD Rats的胃清空率。MMF并未显着改变FD大鼠肠菌群的类型。与对照组相比,杆菌的液体降低,而FD组的企业水平则升高。与FD组相比,MMF组的富公司和蛋白细菌的丰度增加,而细菌群的水平降低。与对照组相比,FD组的菌群/杆菌群的比率显着降低,并且与FD组相比,MMF组的Firmicutes/Bacteroides的比率显着增加。有趣的是,响应MMF的杀菌剂的行为与Wang等11报道的相反。Chen等人14检查了Qii-Zhi-wei-wei-tong颗粒(QZWT)对使用慢性约束应力和碘乙酰胺诱导的慢性非慢性耐乳清胶质性胃炎模型模型的胃,结肠组织和血液中的促炎胆汁表现的影响。使用16S rDNA测序方法用于分析粪便中的肠道菌群群体。行为测试表明,QZWT减轻了小鼠慢性约束应激引起的焦虑和抑郁样行为。QZWT减轻了模型小鼠的胃粘膜炎症细胞浸润,并抑制了包括IL-1β和TNF-α在内的胃组织中促炎细胞因子的mRNA上调。与对照组相比,模型小鼠组的增强型公司/细菌群(f/ b)比率增加。QZWT增加了葡萄球菌,同种菌,曲霉杆菌,Akkermansia和Bifidobacterium的丰度,而它降低了Ruminococcus,de-Sulfovibrio,trindridium和adlercreutzia。炎症反应也减少了。观察到增加了Akkermansia属的水平和DeSulfovibrio属种群的降低。肠道菌群的改变与肠道细菌胆汁酸代谢有关。在胆汁酸组成方面,QZWT处理的小鼠与胃炎模型小鼠不同,支持QZWT通过肠道菌群调节代谢的可能性。Ammar等人15证明了使用Shime®系统在体外生产STW 5-II对pH,气体产生和短链脂肪酸(SCFA)的影响。还进行了16S rDNA测序和基于UH-PLC-HRMS的代谢物分析。STW 5-II是六种药用植物的多根本制剂:伊比利斯·阿玛拉(Iberis Amara),米塔(Menthae Piperitae),洋甘菊(Camomilla Recutita),格里西亚·格拉(Glycyrrhiza glabra),卡鲁姆·卡维(Carum Carvi)和梅利莎(Melissa officinalis)。stw 5-II已显示在涉及FD患者的几项临床试验中有效。stw 5-II导致pH和气体产生的持续变化,并增加了SCFA的产生。stw 5-ii促进了双歧杆菌科的富集,
摘要:珊瑚礁是所有海洋生态系统中生物多样性最丰富的;然而,人们对这些系统中的原核生物多样性知之甚少。为了解决这个问题,我们对巴拿马和百慕大的 3 种大型珊瑚(Montastraea franksi、Diploria strigosa 和 Porites astreoides)的 1000 多个细菌 16S rDNA 进行了测序。仅对 14 个珊瑚样本的分析就产生了 430 种不同的细菌核糖体型。统计分析表明,额外的测序将产生总共 6000 种细菌核糖体型。其中半数序列与之前发表的 16S 序列的同一性不到 93%,因此可能代表新的细菌属和物种;这种新颖性程度远远高于其他海洋样本的新颖性。来自巴拿马珊瑚的样本比来自百慕大的样本更具多样性,与后生动物的多样性梯度相似。珊瑚-细菌关联是非随机的。不同的珊瑚物种拥有不同的细菌群落,即使它们在物理上相邻,而同一珊瑚物种在时间(约 1 年)或空间(3000 公里)上相隔的细菌群落则相似。对分枝珊瑚 Porites furcata 的分析表明,细菌核糖体型也可以在群落内按空间结构排列。因此,珊瑚和礁石代表了多样化、生态结构化的原核生物群落景观。
蛋白浓度(OD 280)由OD 280吸光度确定。物理纯度,然后进行银色染色检测。通过比较浓缩样品中污染物带的聚集质量与稀释样品中蛋白蛋白蛋白带的质量来评估纯度。单链核酸酶在含有放射性标记的单链DNA底物的50 µL反应中确定,在37°C下孵育4小时4小时。双链外切核酸酶在50 µL反应中确定,该反应含有放射性标记的双链DNA底物和10 µL的酶溶液在37°C下孵育4小时。双链核酸内切酶在50 µL反应中确定,该反应含有0.5 µg质粒DNA和10 µL的酶溶液在37°C下孵育4小时。e.coli 16S rDNA污染使用5 µL R含量的酶溶液的样品变性并在Taqman QPCR测定中筛选,以使用污染的大肠杆菌基因组DNA,使用寡核苷酸引物污染了与16S rRNA locus相对应的寡核苷酸引物。提供:25mm Tris-HCl,1mm DTT,0.1mm EDTA,50%甘油(25°C时pH 7.4)。提供:10倍蓝色缓冲区(B0110):500mm NaCl,100mm Tris-HCl,100mm MGCL 2,10mm DTT(25 c)pH 7.9 pH 7.9)。用法说明:5´-overhang(1)
摘要:枯萎综合征(WS)是一种严重的影响鲍鱼haliotis spp。的疾病,是由细胞内人力体类似生物体(WS -RLO)感染引起的。疾病的诊断通常依赖于组织学检查和分子方法的组合(原位杂交,标准PCR和序列分析)。但是,这些技术仅提供对细菌负荷的半定量评估。我们创建了一个实时定量PCR(QPCR)测定法,以根据16S rDNA基因拷贝数识别和枚举鲍鱼组织,粪便和海水样品中WS-RLO的细菌载荷。旨在检测WS-RLO DNA的QPCR分析是根据世界动物健康组织设定的标准验证的。从纯化的质粒稀释液中得出的标准曲线是在7个浓度对数中线性的,效率为90.2%至97.4%。每个反应的检测极限为3个基因拷贝。诊断灵敏度为100%,特异性为99.8%。QPCR分析是巨大的,其高度可重复性和可重现性证明了这一点。这项研究首次表明可以在鲍鱼组织,粪便和海水样品中检测和定量WS-RLO DNA。在各种材料中检测和量化RLO基因拷贝拷贝的能力将使我们能够更好地了解养殖和自然环境中的传输动力学。
