磁共振成像(MRI),也称为核磁共振成像(NMRI),是一种用于创建人体详细图像的扫描技术。这是一种非侵入性方法,用于绘制人体内部结构,该方法使用非电离电磁辐射,并在存在精心控制的磁场的情况下采用辐射频率辐射,以在任何平面1中产生人体的高质量横截面图像。这意味着MRI机器使用强磁场和无线电波来生成身体部分的图像,而X射线,CT扫描或超声波也无法看到。例如,它可以帮助医生看到内部关节,软骨,韧带,肌肉和肌腱,这有助于检测各种运动伤害。此外,它还用于检查内部身体结构并诊断各种疾病,例如中风,肿瘤,动脉瘤,脊髓损伤,多发性硬化和眼睛或内耳问题等。它在研究中也广泛用于测量大脑的结构和功能等。
摘要 - 磁共振成像(MRI)中的特权由于侵犯扫描,存储,转移,分析和共享而起着重要作用。本文回顾了MRI中的隐私问题,尤其是大脑MRI在数据集,模型,平台,违规,解决方案和文献中使用的解决方案方面讨论了基于风险,技术,政策,规则以及MRIS中现有和缺少点的重要问题。即使存在可用技术匿名,差异隐私,联合学习,假名,合成数据生成,隐私性或匿名化的难题仍然需要提供新颖的隐私,保密性,或保留敏感数据的新颖敏感数据,也需要使用可用的技术,即使有规则,法规,政策和法律可用来保存隐私,差异隐私,联合学习,化学数据生成,合成数据或匿名化困境仍在处理中。本文通过一些建议着重于这些问题,并针对未来的方向讨论了这些问题。
• 获得高质量的脑部扫描对于准确解释至关重要。 • 应提供充足的时间、培训和资源,以确保婴儿在扫描前和扫描期间安顿下来。 • 使用的成像方案需要针对新生儿大脑进行优化,适合检测各种情况并根据患者的具体临床病史进行量身定制。为此,为所有婴儿制定标准方案可能会有所帮助。 • 沟通(无论是通过 MDT 正式进行还是临床团队(新生儿科医生、儿科神经病学家、神经放射学家和放射技师)之间的非正式沟通)对于确保在合适的时间按照合适的顺序进行扫描非常重要。 • 参与新生儿 MRI 检查的每个人都应该了解 MRI 环境中的风险,包括强磁场,并接受过适当的 MR 安全培训。
随着磁共振成像技术的不断进步,定量成像方法在临床和研究应用中都获得了巨大的发展。例如,弥散加权成像、灌注加权成像、功能性磁共振成像和磁共振已被广泛用于深入了解儿童的正常大脑发育和各种神经系统疾病。1-4 当系统相关偏差得到控制时,定量成像方法可以得出客观且可能更具可重复性的发现。尽管具有这些潜在优势,但定性 T1 加权和 T2 加权图像仍然是临床实践中使用最广泛的磁共振图像,临床解释/诊断很大程度上依赖于定性或半定量的视觉评估。T1 和 T2 弛豫时间是基本的磁共振成像特定属性,受内在组织成分、微环境、温度和磁场强度控制。与传统磁共振成像相比,直接测量 T1 和 T2 弛豫时间可以提供更定量和客观的组织特征和病理过程评估。 5,6 然而,技术限制(特别是较长的采集时间)使得这些方法更容易受到运动的影响,并且容易出现系统相关的不稳定性,从而阻碍了它们在临床上的广泛应用。
摘要:单光子发射器的有效片上集成是光子集成电路在量子技术中应用的重大瓶颈。如果不是因为当前设备缺乏可扩展性,共振激发固态发射器正在成为近乎最佳的量子光源。目前的集成方法依赖于光子集成电路中成本低廉的单个发射器放置,这使得应用无法实现。一个有前途的可扩展平台基于二维 (2D) 半导体。然而,波导耦合 2D 发射器的共振激发和单光子发射已被证明是难以实现的。在这里,我们展示了一种可扩展的方法,使用氮化硅光子波导同时应变定位来自二硒化钨 (WSe 2 ) 单层的单光子发射器并将它们耦合到波导模式中。我们通过测量 g (2) (0) = 0.150 ± 0.093 的二阶自相关来演示光子电路中单光子的引导,并进行片上共振激发,得到 ag (2) (0) = 0.377 ± 0.081。我们的研究结果是实现可扩展光子量子电路中量子态的相干控制和高质量单光子复用的重要一步。关键词:二维材料、单光子发射器、光子集成电路、量子光子学、共振荧光、应变工程
1 阿米蒂空间科学与技术研究所学生 2 阿米蒂空间科学与技术研究所教授 摘要 电子回旋共振 (ECR) 推进器正成为一种有前途的高效航天器推进技术,利用电子回旋共振现象产生推力。这篇全面的评论综合了该领域的关键进步、设计策略和持续挑战。ECR 推进器通过使用微波能量加热磁化等离子体中的电子来运行,从而产生高电离率和有利的推力功率比。与传统推进系统不同,ECR 推进器具有显着优势,包括更高的比冲和更低的燃料消耗,使其成为长时间太空任务的理想选择。本文深入探讨了 ECR 推进器设计的各个关键方面,例如天线配置、气体注入方法和磁场优化,重点介绍了这些因素如何影响整体性能。它还讨论了解决效率、寿命和功率传输等问题的最新实验结果和理论模型。此外,该评论还探讨了未来的发展方向,强调需要在材料和自动阻抗匹配方面取得进步,以提高可靠性和推力产生能力。通过这一分析,本文旨在全面了解 ECR 推力器,强调其成为未来太空探索有竞争力和可持续选择的潜力。关键词:电子回旋共振 (ECR) 推力器、等离子推进、电力推进技术、微波等离子体加速、推力器中的磁场配置、离子加速简介电子回旋共振 (ECR) 等离子推力器于 20 世纪 60 年代首次推出,利用电场和磁场加速等离子体,为航天器提供推力。与传统推力器不同,ECR 推力器无需电网,只需要一个电源,这使得它们在太空推进领域具有潜在的颠覆性作用 [4,10,14]。最近的进展主要集中在解决过去的实验限制、提高测量精度和优化各种推力器参数。等离子体物理学涵盖了在电离气体中观察到的各种现象,其应用范围涵盖自然现象、聚变研究和工业过程[22,30,35]。尽管存在这种多样性,但等离子体的本质可以描述为带电粒子和中性粒子在电、磁和电磁相互作用影响下的集体行为。在工业等离子体社区中,等离子推力器社区专注于开发用于
这些服务可能包含在所有 Medica 计划中,也可能不包含在内。保险范围受适用联邦或州法律的要求约束。请参阅会员的计划文件,了解其他具体保险范围信息。如果此一般信息与会员的计划文件存在差异,则将以会员的计划文件为准来确定保险范围。对于 Medicare、Medicaid 和其他政府计划,除非这些计划要求不同的保险范围,否则将适用此政策。会员可以拨打会员身份证上列出的电话号码联系 Medica 客户服务部,以更具体地讨论他们的福利。有疑问的提供商可以拨打免费电话 1-800-458-5512 联系 Medica 提供商服务中心。Medica 保险政策不是医疗建议。
摘要讨论了激光谐振电离技术在放射性离子束设备上产生的单个带电离子的生产中的应用。结合高效率和元素的选择性的abily是使谐振离子激光离子源(RILIS)成为许多放射性离子束设备的重要组成部分。在CERN,RILIS是Isolde设施中最常用的离子源,每年运营时间为3000小时。对于某些同位素,RILI也可以用作快速有意义的激光光谱工具,前提是光谱分辨率足够高以揭示核结构对原子光谱的影响。这可以研究具有生产率甚至低于每秒1个离子的同位素的核性质,在某些情况下,可以实现异构体选择性离子ization。总结了可用于在放射性离子束设备上实施共振激光离子的解决方案。涵盖了激光要求,离子源条件,选择性,效率和应用等方面。 还将描述在CERN ISOLDE设施实施的用于激光光束运输和控制,可靠性和易于操作的实际解决方案。涵盖了激光要求,离子源条件,选择性,效率和应用等方面。还将描述在CERN ISOLDE设施实施的用于激光光束运输和控制,可靠性和易于操作的实际解决方案。
结果:此方法为激活的C1的酶活性提供了线性定量范围,高达10 m mol mol mol -min -1 ml -1 -1和0.096 m mol·最小值·最小值·Ml -1·ml -1用于血清样品。该方法的恢复在90%〜110%的范围内。样品内分析的所有CV值和三个水平的分析均小于10%。与C1R酶,MASP1和MASP2的交叉反应速率小于0.5%。没有发现胆红素(0.2 mg ML -1),Chyle(2000 FTU)和血红蛋白(5 mg ML -1),但抗凝剂(EDTA,柠檬酸盐和肝素)抑制活性C1S的酶促能力。因此,该建立的方法可用于以0.096-10.000 m mol mol -1 ml -1 ml -1的浓度间隔确定人血清样品中的活性C1。