平面超导传输线谐振器可以在多个谐波共振频率下操作。这允许涵盖具有高灵敏度的广泛光谱状态,例如对于低温微波光谱。这种实验的常见并发症是存在不希望的“虚假”其他共振,这是由于谐振器基板或外壳框中的站立波。识别单个共振的性质(“设计”与“伪造”)对于更高的频率或如果包括未知材料特性的元素,那么对于微波光谱而言,可能会变得具有挑战性。在这里,我们讨论了各种实验策略,以区分共面超导谐振器中设计和虚假的模式,这些谐振器以高达20 GHz的频率范围运行。这些策略包括跟踪共振演变与温度,磁场和微波功率的函数。我们还证明了谐振器的局部修饰,通过应用微量的介电或电子自旋谐振材料,可导致各种共振模式中的特征性特征,具体取决于电或磁性微波场的局部强度。
Yi-Wen Liu 1,§ , Zhe Hou 2,§ , Si-Yu Li 1,§ , Qing-Feng Sun 2,3,4, *, and Lin He 1,5, * 1 Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing, 100875, People's Republic of China 2 International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China 3 Quantum Matter的合作创新中心,北京100871,中国4北京量子信息科学学院,西BLD。#3,编号10 Xibeiwang East Road,Haidian区,北京100193,中国5个国家主要材料的国家主要实验室,上海宏观系统和信息技术研究所,中国科学院,上海865 Changnai Road,20005010 Xibeiwang East Road,Haidian区,北京100193,中国5个国家主要材料的国家主要实验室,上海宏观系统和信息技术研究所,中国科学院,上海865 Changnai Road,200050
摘要:将声子视为不同类型的量子系统之间的连贯中介。工程的纳米级设备,例如光力机械晶体(OMC),提供了一个使用声子作为量子信息载体的平台。在这里,我们演示了钻石中的OMC,专为声子与硅空位(SIV)自旋之间的相互作用而设计。使用Millikelvin温度下的光学测量值,我们测量6 GHz声学模式的线宽度为13 kHz(Q因子约为4.4×10 5),在GHz频率范围内的钻石记录在硅硅频率范围内,在Silicon中的最大程度上的线路宽度范围内。我们研究了这些设备中的SIV光学和自旋特性,并概述了通向连贯的自旋 - 声子界面的路径。关键字:光学力学,硅空缺,钻石,声子
摘要 — 从硅上外延生长的氮化镓 (GaN) 开始,设计、制造并表征了集成压电换能器的预应力微谐振器。在夹紧梁中,众所周知,拉伸应力可用于增加谐振频率。在这里,我们计算了预应力梁中平面外弯曲模式的模态函数,并推导出一个模型来预测谐振频率和压电驱动因子。我们表明,理论和实验结果之间可以获得良好的一致性,并推导出机电转换的最佳设计。最后,我们的模型预测了由于拉伸应力导致的品质因数增加,这已通过真空下的实验测量得到证实。这项研究展示了如何利用外延工艺产生的材料质量和初始应力。
S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*, M. Ferri1,b, L. Belsito1,c, D. Marini1,d, M. Zielinski2,e, F. La Via3,f 和 A. Roncaglia1,g S. Sapienza1,a*、M. Ferri1,b、L. Belsito1,c、D. Marini1,d、M. Zielinski2,e、F. La Via3,f 和 A. Roncaglia1,g
基于苯硼酸的水凝胶夹层射频 (RF) 谐振器被证明是一种用于监测葡萄糖的高响应、无源和无线传感器。结构由未锚定的电容耦合开口环组成,中间是葡萄糖响应水凝胶。苯硼酸水凝胶会根据环境葡萄糖浓度表现出体积和介电变化——这些变化被有效地转化为夹层 RF 传感器谐振响应的大幅变化。这些微型、可拉伸和可扩展的传感器(5 毫米 × 5 毫米 × 250 微米)不需要传感节点的微电子或电源,可以通过近场耦合远程读取。传感器表现出高灵敏度(每 150 毫克/分升葡萄糖谐振频率偏移约 10%——相当于 50 MHz),检测限为 10 毫克/分升,对碳水化合物浓度突然变化的阶跃响应时间约为 1 小时。值得注意的是,这些传感器在本文描述的时间段内(室温下 45 天)没有表现出信号漂移或滞后现象。我们通过连接单个 LED 将传感器转变为生物电子 RF 报告标签——它们通过发射光远程报告葡萄糖浓度。我们预计,RF 读出和苯硼酸基水凝胶的非降解性和长期性将使生物传感器能够长期远程读取葡萄糖。
“许多研究小组都表明他们可以将非常非常小的事物纠缠到单一电子。,但在这里我们可以证明两个巨大的物体之间的纠缠。“我们在这项研究中证明的第二件事是我们的平台可扩展。如果您可以想象构建一个大量子处理器,我们的平台将就像一个单元格。”
摘要:近场辐射传热(NFRHT)测量通常依赖于定制的微发行版,这些版本在其原始演示后可能很难再现。在这里,我们使用纯硅(SIN)膜纳米力学谐振器研究NFRHT,一种可广泛可用的基材,用于电子显微镜和光学力学等应用,并可以轻松地沉积其他材料。我们报告的测量值降低到较大的曲率半径(15.5 mm)玻璃散热器和SIN膜谐振器之间的最小距离。在如此深的次波长距离处,热传递在(0.25 mm)2的有效区域上由表面极化共振支配,这与使用自定义的微型制造设备的平面 - 平面实验相当。我们还讨论了使用纳米力学谐振器的测量如何创造机会,同时测量近场辐射传热和热辐射力(例如,对Casimir力的热校正)。关键字:近场辐射,纳米力学谐振器,热辐射,表面极化
电子束光刻:根据应用,将电子束光刻胶 (950K PMMA A4,MicroChem) 旋涂至 270 nm-330 nm 的厚度。接下来,在顶部热蒸发 20 nm Au 的导电层,以避免光刻过程中电荷积聚。为了进一步减轻充电效应,我们使用了相对较低的束电流 (0.3 nA)、多通道曝光 (GenISys BEAMER) 和减少电子束在一个区域持续停留时间的写入顺序。光刻胶的总曝光剂量为 1200 uC/cm2,电压为 100 kV (Raith EBPG5000 plus)。曝光后,我们用 TFA 金蚀刻剂 (Transene) 去除导电层,并在 7 C 的冷板上将光刻胶置于 1:3 MIBK:IPA 溶液中显影 90 秒,然后用 IPA 封堵 60 秒,再用 DI 水冲洗。原子层沉积:在进行 ALD 之前,我们在 ICP RIE 工具 (PlasmaTherm Apex) 中使用 10 sccm O2 和 50 W ICP 功率进行三秒等离子曝光,以去除残留聚合物。使用此配方,PMMA 蚀刻速率约为 2.5 nm/s。对于 TiO 2 沉积,我们使用商用热 ALD 室 (Veeco/Cambridge Savannah ALD)。使用四(二甲酰胺)钛 (TDMAT) 和水在 90 C 下沉积非晶态 TiO 2,交替脉冲分别为 0.08 秒和 0.10 秒。沉积期间连续流动 100 sccm N 2,前体脉冲之间的等待时间为 8 秒。沉积速率通常为 0.6 A/循环。 ICP 蚀刻程序:我们通过氯基 ICP RIE 蚀刻(PlasmaTherm Apex)去除过填充的 TiO 2,基板偏压为 150 W,ICP 功率为 400 W,Cl 2 为 12 sccm,BCl 为 8 sccm。蚀刻速率通常为 1.5-1.7 nm/s。SEM 成像:在 5 nm Cr 导电层热沉积后,使用 Carl Zeiss Merlin FE-SEM 对纳米光子结构进行成像。FDTD 模拟:使用 Lumerical 有限差分时域软件模拟环形谐振器、光子晶体腔和光栅耦合器。透射光谱:我们使用自制的共焦显微镜装置,该装置具有独立的收集和激发通道,以进行透射光谱。脉冲超连续源 (430-2400 nm,SC-OEM YSL Photonics) 和光谱仪 (1200 g/mm,Princeton Instruments) 用于宽带测量。为了对单个腔体谐振进行高分辨率扫描,我们使用 50 kHz 线宽、可调 CW 激光器 (MSquared) 进行激发,并使用雪崩光电二极管 (Excelitas) 进行检测。金刚石膜:通过离子轰击 34 生成 500 nm 厚的金刚石膜,并在阿贡国家实验室通过化学气相沉积进行覆盖。在对离子损伤层进行电化学蚀刻后,去除悬浮膜并用 PDMS 印章翻转。然后使用 ~500 nm 的 HSQ 抗蚀剂将它们粘附到 Si 载体上,并在氩气中以 420 C 的温度退火 8 小时。最后,使用 ICP 蚀刻法将膜蚀刻至所需厚度,蚀刻气体为 25 sccm Ar、40 sccm Cl2、400 W ICP 功率和 250 W 偏压功率。蚀刻速率通常为 1.2-1.4nm/s。
集成克尔量子频率梳 (QFC) 具有产生多个可扩展量子态的潜力,已成为宽带纠缠的紧凑、稳定和基本资源。在这里,我们构建了一个通过片上氮化硅微环谐振器设计二分纠缠 QFC 的平台。通过建立克尔非线性微谐振器的系统量子动力学,我们的平台可以支持多达 12 个连续变量量子模式,形式为受磁滞影响的六个同时双模压缩对。频率模式对的纠缠度取决于谐振器结构和环境温度。通过调节腔体温度,我们可以在特定的注入泵浦功率和泵浦失谐下优化纠缠性能。我们全面的 QFC 设计流程和纠缠分布控制可以改善纠缠的产生和优化。