摘要。本文研究了在有限的许多谐振器链中的浪潮定位。有一个广泛的理论,可以预测在有限周期性系统中缺陷引起的局部模式的存在。这项工作将这些原理扩展到有限尺寸的系统。我们考虑在结构中具有几何缺陷的二聚体的亚波长谐振器的有限系统。这是Schrie效模型的经典波浪类似物。我们证明存在用于缺陷的有限二聚体结构的光谱差距,并发现特征值在光谱间隙内与其相关本本特征模式的定位之间存在直接关系。然后,我们显示了缺陷结构中特征值的存在和独特性,证明存在独特的局部接口模式。据我们所知,我们的方法基于Chebyshev多项式,是第一个在有限的许多共振器系统中定量表征局部界面模式的第一个。
图1:(a)横向设备结构的示意图,(b)悬挂式sin鼓的SEM图像,上面覆盖了25 nm al薄纤维。为了最大程度地减少金属对阻尼的贡献,在大多数夹紧区域中都不存在。16该薄片通过两个矩形Al电极与外部电极连接。(c)最终设备结构的SEM图像,其中Al/sin电容偶联具有悬浮的顶门,以及(d)测量设置的示意图,其中PCB部分上的微波腔以焦糖颜色标记。微波炉通过连接到其悬浮的顶门的粘合线与sin鼓(紫色)耦合。用Al薄片覆盖的Sin鼓通过粘结线连接到两个微带传输线。一个用于驱动机械谐振器,另一个用于通过微波反射方案17检测机械运动。更多详细信息显示在支持信息(SI:纳米化,微波炉重新射击的设置和建模)中。
我想到的是最近几个月,以及该项目面临的挑战,我不得不感谢许多对该项目的成功负责的人。首先要感谢Yiwen Chu教授给了我这个独特的机会,这完全改变了我的观点和职业指导。我深切感谢Ines C. Rodrigues博士的所有耐心和指导以及Yu Yang的所有耐心,并感谢他在洁净室里的所有支持和培训。我不能夸大我对他们投资于该项目的时间和精力的赞赏。此外,我衷心感谢Marius Bild,Andraz Omahen,Rodrigo Benevides博士,Stefan Pliging以及所有参与我们设备的设计,制造和测量的其他人以及该小组的其余部分,以在该项目的过程中提供他们的建议和友谊。
摘要。本文研究了在有限的许多谐振器链中的浪潮定位。有一个广泛的理论,可以预测在有限周期性系统中缺陷引起的局部模式的存在。这项工作将这些原理扩展到有限尺寸的系统。我们考虑在结构中具有几何缺陷的二聚体的亚波长谐振器的有限系统。这是Schrie效模型的经典波浪类似物。我们证明存在用于缺陷的有限二聚体结构的光谱间隙,然后在缺陷结构的间隙中显示出特征值的存在。我们发现特征值位于光谱差距之内的直接关系与其相关本本特征的本地化之间,我们表明的是指数性的。据我们所知,我们的方法基于Chebyshev多项式,是第一个在有限的许多共振器系统中定量表征局部界面模式的第一个。
摘要。超导谐振器具有高品质因数,因此存储能量的衰减时间更长,因此可提供卓越的性能。这些超导谐振器的一个新兴应用是量子计算和量子信息科学,它使我们能够探索和深化对物质的理解,而这些发现可能无法通过传统计算和技术进行探索。量子处理架构使用在微波范围内工作的谐振器和互连电路,以及超导带状线技术和低噪声电子设备进行切换和通信。可以通过将这些设备嵌入三维谐振器中来延长相干时间,从而提高这些设备的性能,从而通过降低错误率并在量子态衰减之前允许更多操作(计算)来提高设备的实用性。在这里,我们简要回顾了当前用于量子计算的微波技术以及提高量子比特相干时间的进展。
摘要:飞秒内的等离激元激发衰减,将非热(通常称为“热”)载体留在后面,可以注入分子结构中,以触发化学反应,而这些反应否则无法达到一个被称为等离子催化的过程。在这封信中,我们证明了谐振器结构和等离子纳米颗粒之间的强耦合可用于控制等离激元激发能与电荷注入能量之间的光谱重叠。我们的原子描述通过辐射反应潜力,将实时密度功能性理论夫妇自搭与电磁谐振器结构。对谐振器的控制提供了一个额外的旋钮,可用于非侵入性的等离激元催化,在这里超过6倍,并动态地反应催化剂的催化剂是现代催化的新方面。关键字:等离激元催化,强光 - 物质耦合,热载体,偏振化学,局部表面等离子体,密度功能理论
许可: 本作品已获得 Creative Commons Attribution 4.0 International 许可。阅读完整许可
高品质因数 ( Q m ) 机械谐振器对于需要低噪声和长相干时间的应用至关重要,例如镜面悬挂、量子腔光机械装置或纳米机械传感器。材料中的拉伸应变使得能够使用耗散稀释和应变工程技术来提高机械品质因数。这些技术已用于由非晶材料制成的高 Q m 机械谐振器,最近也用于由 InGaP、SiC 和 Si 等晶体材料制成的高 Q m 机械谐振器。表现出显著压电性的应变晶体薄膜扩展了高 Q m 纳米机械谐振器直接利用电子自由度的能力。在这项工作中,我们实现了由拉伸应变 290 nm 厚的 AlN 制成的 Q m 高达 2.9 × 10 7 的纳米机械谐振器。AlN 是一种外延生长的晶体材料,具有强压电性。利用耗散稀释和应变工程实现 Q m × fm 乘积接近 10 13 的纳米机械谐振器
摘要 电生理学和光遗传学的结合使我们能够探索大脑如何运作,直至单个神经元及其网络活动。神经探针是体内侵入式设备,它集成了传感器和刺激部位,以高时空分辨率记录和操纵神经元活动。最先进的探针受到其横向尺寸、传感器数量和访问独立刺激部位的能力等方面的限制。在这里,我们实现了一种高度可扩展的探针,它具有小尺寸传感器阵列和纳米光子电路的三维集成,与最先进的设备相比,每个横截面的传感器密度提高了一个数量级。我们首次通过将一个波导耦合到众多光环谐振器作为无源纳米光子开关,克服了纳米光子电路的空间限制。通过这种策略,我们实现了精确的按需光定位,同时避免了对波导束的空间要求,并通过概念验证设备证明了其可行性及其对高分辨率和低损伤神经光电极的可扩展性。