通过活化的单体机制诱导聚合。光酸发生器(PAGS)46对光刻和微电子发育的e;但是,PAG介导的聚合化不是可逆的,仅提供对聚合物启动而不是链生长的时间控制。为了克服这一挑战并发展可逆的光acid,Boyer和De Alaniz独立使用了基于Merocyanine的催化剂。47,48然而,螺旋罗蛋白酶慢慢的热恢复为质子化的丙氨酸限制了这些系统中时间控制的程度。同样,Hecht和Liao都报道了可拍摄的ROP的催化剂,49,50,但在这些系统中也遇到了与催化效率和可逆性有关的局限性。在此基础上,可以通过外部刺激可逆地激活ROP的酸催化剂仍然是一个挑战。我们假设,可以通过设计可逆的,氧化还原控制的酸来实现对酸催化性的阳离子ROP的时间控制,该酸可以通过氧化状态的变化来改变其p k a。51,52特定的cally,通过将铁链接到酸性官能团53,54中,我们设想了一个系统,在该系统中,P k a会在氧化中从Fe(II)到Fe(II)降低,然后通过活化的单体机制启动ROP(图1)。重要的是,将铁金属物种还原回二茂铁将恢复分子的原始酸度并停用催化剂,可消除可逆的终止,从而对聚合进行时间控制。
动态共价键是通过可逆反应形成的,这意味着可以通过改变反应条件(例如温度、pH 值或浓度)来改变反应物和产物之间的平衡。可逆共价键的例子包括亚胺键、二硫键和硼酸酯键。这些键允许创建能够适应和响应外部刺激的材料,从而产生新的特性和功能。三聚体分子通常由于单体单元之间形成额外的化学键而表现出更高的化学稳定性。三聚体分子可以采用特定的结构排列,例如线性、环状或支链构型,具体取决于单体的几何形状和三聚化过程的性质。三聚化用于合成生物活性化合物和药物中间体。与单体相比,三聚体分子可能表现出增强的药理特性。三聚反应有助于生产具有定制特性和功能的高分子量聚合物。三聚体单体
2。田纳西州纳什维尔大学范德比尔特大学化学与生物分子工程系37235,美国田纳西州纳什维尔大学范德比尔特大学化学与生物分子工程系37235,美国
摘要:已提出分层TIS 2作为各种电池化学的多功能宿主材料。尽管如此,尚未完全了解其与水性电解质的兼容性。在此,我们报告了可逆的水合过程,以说明相对稀释电解质中TIS 2的电活性和结构性演变,以用于可持续的锂离子电池。溶剂化的水分子在Tis 2层中与Li +阳离子一起插入,形成了一个水合相,具有LI 0.38(H 2 O)2-δTIS2的名义公式单位作为末端。我们明确地通过互补的电化学循环,Operando结构表征和计算模拟来确认两层插入水的存在。这样的过程是快速且可逆的,在1250 mA g -1的电流密度下提供60 mAh g -1放电能力。我们的工作为基于可逆的水共同点的高速水性锂离子电池提供了进一步的设计原理。W
结果:平均年龄为35.5±23.8岁(范围为5-71岁),男女比率为6:15。LSCD的主要病因是12例患者(57.1%),边缘性角膜炎,在8例患者中的边缘性角膜炎(38.1%)和1例患者的局部药物毒性(4.8%)。平均基线最佳校正视力(BCVA)为最小分辨率角(logmar)的0.25±0.26对数(范围为0-1 logmar)。预处理LSCD阶段是5眼(17.2%)(17.2%),12眼(41.4%)(41.4%),4眼(13.8%)(13.8%)的1C,4眼(13.8%)(13.8%)的2A阶段(13.8%)和4眼(13.8%)中的2B。在6眼(20.7%)中实现了LSCD的完整回归,其治疗方法针对主要病因。在剩下的眼睛中,治疗后,LSCD的严重程度降低到手术阈值以下,该阈值被认为是2B期。平均最终BCVA为0.07±0.1 logmar(范围为0-0.4 logmar)。
1。Promega Corporation。2800 Woods Hollow Road,威斯康星州麦迪逊,美国53719,美国2。 霍华德·休斯医学院蜂窝和分子药理学系,加利福尼亚大学旧金山分校,旧金山,加利福尼亚州94158,美国3。 这些作者同样贡献2800 Woods Hollow Road,威斯康星州麦迪逊,美国53719,美国2。霍华德·休斯医学院蜂窝和分子药理学系,加利福尼亚大学旧金山分校,旧金山,加利福尼亚州94158,美国3。霍华德·休斯医学院蜂窝和分子药理学系,加利福尼亚大学旧金山分校,旧金山,加利福尼亚州94158,美国3。这些作者同样贡献
摘要:在设计用于超大规模集成 (VLSI) 系统的数字电路时,降低功耗方面的能效考虑是一个重要问题。量子点细胞自动机 (QCA) 是一种新兴的超低功耗方法,不同于传统的互补金属氧化物半导体 (CMOS) 技术,用于构建数字计算电路。开发完全可逆的 QCA 电路有可能显著降低能量耗散。多路复用器是构建有用数字电路的基本元素。本文介绍了一种具有超低能耗的新型多层完全可逆 QCA 8:1 多路复用器电路。使用 QCADesigner-E 2.2 版工具模拟了所提出的多路复用器的功耗,描述了 QCA 操作背后的微观物理机制。结果表明,所提出的可逆 QCA 8:1 多路复用器的能耗比文献中之前介绍的最节能的 8:1 多路复用器电路低 89%。
印度隐藏在加密图像(RDHEI)中的摘要可逆数据是一种将秘密信息嵌入加密图像中的技术。它允许提取秘密信息和无损解密以及原始图像的重建。本文提出了一种基于Shamir的秘密共享技术和多项目构建技术的RDHEI技术。我们的方法是让图像所有者通过对像素并构造多项式来隐藏多项式的系数中的像素值。然后,我们通过Shamir的秘密共享技术将秘密钥匙替换为多项式。它使Galois字段计算能够生成共享像素。最后,我们将共享像素分为8位,然后将它们分配给共享图像的像素。因此,嵌入式空间被腾空,生成的共享图像隐藏在秘密消息中。实验结果表明,我们的方法具有多个隐藏机制,并且每个共享图像具有固定的嵌入率,随着更多图像的共享,该机制不会降低。此外,与先前的方法相比,嵌入率得到提高。简介多媒体安全技术用于防止未经授权的用户复制,共享和修改媒体内容。为了防止此问题,加密和信息隐藏通常用于保护媒体内容。就信息隐藏技术而言,传统信息隐藏技术将破坏封面图像的内容。因此,这些图像是否可以完全恢复非常重要。但是,在某些例外情况下,例如军事,医疗和法律文档图像,图像的轻微失真是完全无法接受的。可逆数据隐藏方案(RDH)可以与无损的要求相对应。RDH方法应用了更改上下文的方法,以在封面媒体中隐藏秘密数据。数据提取后,不断变化的上下文将被充分回收到封面媒体。另一方面,RDHEI(隐藏在加密图像中的可逆数据)技术可以将加密技术与RDH技术相结合,RDH技术不仅可以在图像中隐藏秘密信息,而且还可以加密图像以保护图像内容。Visual密码学是一种加密技术,允许视觉信息(图片,文本等)要加密的方式使解密成为不需要计算机的机械操作。
不降低发射光子的性质,并且可以独立用于同一芯片上的单个NW-QD,到目前为止仍然是一个挑战。解决此问题对于将光子与需要MHz相连的量子系统与Sub-GHz精确的量子系统(例如原子集合)在量子网络中充当记忆的量子系统至关重要。在这里,我们演示了一种可逆的调整方法,可以将NW-QD的发射频率通过sub-GHz精度调整为300 GHz以上。我们通过气体凝结实现这一目标,然后通过局部激光消融将其部分逆转。此过程可很好地调节用于量子点的应力,从而调整其发射频率。我们通过调整跨原子共振的发射单光子的频率来验证该方法的精度和稳定性,以探测其吸收和分散体。我们观察到在D 1-Line共振下,在热纤维蒸气中,NW-QD的单光子吸收多达80%,并且与D 1-LINE基态的超精细转变相关的组速度下降75倍。我们观察到NW-QD发射的二阶自相关函数,寿命或线宽的效果没有明显的效果,最多可以调音300 GHz,并且在调音高达100 GHz时,我们看到对NW-QD的细胞结构分裂的影响最小。
摘要 地热发电的普遍优势是其可靠性和基载能力。然而,未来的能源系统需要可靠的能源,这些能源还能对需求的变化做出快速反应。可逆有机朗肯循环 (ORC) 也可用作高温热泵 (HTHP),使地热系统能够更灵活地运行。与区域供热系统和/或储热系统 (例如 HT-UTES) 相结合,可逆 ORC 可以响应电网的需求,从地热盐水中发电或在 HTHP 模式下消耗电力。通过实施存储系统,HTHP 运行期间产生的高温热量可用于在以后增加地热电力输出。这项工作概述了可逆 ORC 在地热系统中的应用和灵活性潜力,并介绍了此类系统的潜在系统布局。
