氧化石墨烯和还原氧化石墨烯 (RGO) 是广泛应用于生物医学的碳二维纳米材料。它们与真核细胞和原核细胞的独特相互作用可用于实现精确的细胞内递送、创建设备涂层以及设计用于治疗和成像应用的治疗诊断材料,主要用于癌症研究领域。然而,众所周知,RGO 的疏水行为限制了其在生物介质中的稳定性。本文提出了使用抗坏血酸钠 (NaA) 作为还原剂来制备 RGO,以提供一种非常适合用于细胞培养基的纳米材料。通过结合实验和理论的方法证明,NaA 能够产生一种特殊的 RGO 衍生物,发挥双重作用,即在环氧还原时 C sp 2 网络恢复和通过 H 键进行 RGO 边缘功能化,使 RGO 在水基介质中具有迄今为止前所未有的分散性。证明了从 NaA 获得的 RGO 二维层的动力学稳定性及其在药物输送方面的卓越生物相容性,为生物应用释放了巨大的潜力。
摘要 本研究考察了水热法制备的氧化铜还原氧化石墨烯纳米复合材料 (CuO/rGO) 的物理化学性质和耐腐蚀性。CuO/rGO 纳米复合材料具有明确而均匀的结构、减小的晶体尺寸和均匀分布的与 rGO 连接的 CuO 纳米粒子。X 射线衍射证实了 15.1 nm 结晶单斜 CuO 纳米粒子的制造。EDX 通过检测 Cu、O 和 C 成分来确认复合材料的成分。电化学阻抗谱 (EIS) 和动电位极化 (LSV) 测试评估了 CuO/rGO 纳米复合材料的耐腐蚀性。在 HCl 电解质下以 PPM 比率腐蚀的低碳钢板处理纳米复合材料涂层基材。通过将其腐蚀性能与 CuO/rGO 浓度(以 ppm 为单位)进行比较来评估复合材料的协同效应。耐腐蚀数据表明,CuO/rGO 复合材料的抑制剂浓度为 0、25、50、75 和 100 ppm 时性能有所改善。将 rGO 添加到复合材料中可以保护复合材料并加速电荷转移,从而减少腐蚀并提高稳定性。复合材料的 CuO 和 rGO 协同效应无论浓度如何都具有出色的耐腐蚀性,使其成为易腐蚀应用的可行材料。该研究开发了新颖有效的防腐方法,以保护食品、汽车和大型能源行业的材料。
摘要:减少的氧化石墨烯(RGO)是一种具有许多潜在应用的高度有希望的材料。各种碳源可用作生产RGO的起始材料。这项研究探讨了甘蔗渣(SB)的利用,甘蔗(SB)是一种全球丰富的农业废料,是RGO合成的先驱。最初,在流动的氩气下以10°C/min的速度以10°C/min的速度在750°C下进行热解,以提取石墨相。然后使用悍马的方法将提取的石墨转换为氧化石墨烯(GO)。使用金属锌(Zn)作为还原剂,将GO产物进行超声处理,以在还原为RGO之前打破氧官能团。通过XRD和FTIR分析确认了从石墨到GO的每个合成步骤,从石墨到RGO的每个合成步骤的石墨变换。此外,拉曼光谱法进一步证实了RGO的形成,该光谱显示了RGO相的特征D,G和2D频段。sem显微照片揭示了RGO的形态,作为片状2D多层纳米片,薄板厚度为几百nm。这项研究还研究了Zn粉末浓度对形成RGO的GO的影响。发现适当的锌量对于RGO合成至关重要,因为过量量导致RGO样品中存在Zn残基。这些发现提出了一种直接有效的方法,可以从甘蔗渣拿起RGO准备RGO,可以将其扩展为工业生产。此外,对RGO样品的电化学性质的研究显示,在优化的合成条件下,包括较大的表面积,高特异性电容,电导率和良好稳定性。这将SB产生的RGO样品定位为超级电容器应用的有前途的电极材料。
一般方法S2合成芳唑酯的一般程序1 S3程序,用于合成苯胺前体2q和2R S7的一般方法,用于光促进RGO S8 XPS的功能化功能化功能化的1- RGO材料S10 XP的rgo材料与纤维中的靶标S11 XPS的功能性S11 S11 XPS XPS xps apper, molecules S12 XPS of rGO functionalized with bromine-bearing target molecules S13 XPS of rGO functionalized with pyridine and thiophene-bearing target molecules S14 XPS of rGO functionalized with iodine-bearing target molecules S15 XPS characterization of the functionalized 1 - GO S16 Procedure for the Suzuki coupling on functionalized 1m - rGO S18 XPS结合能和C 1S拟合了功能化1A -HOPG S23吸收光谱S25 NMR光谱S33 S33参考S42
摘要:与合成染料的水污染是全球不断升级的问题。在此,CO 3 O 4装饰的还原氧化石墨烯(CO 3 O 4 -RGO)被报告为有效的有机染料分解的有效异质光催化剂。通过包括XRD,XPS,TEM和FTIR在内的光谱技术证实了CO 3 O 4 -RGO的合成。表征后,制备的CO 3 O 4 -RGO复合材料作为光催化剂测试,以降解甲基蓝和甲基橙。CO 3 O 4 -RGO的光催化效率在60分钟后> 95%,相当于200 mg/L作为每种染料的初始浓度。通过BOD和COD测量确认了MB和MO的光降解。还研究了实验参数,例如CO 3 O 4 -RGO的可重复使用性,催化剂剂量的影响以及染料浓度对光催化活性的影响。MB降解的Co 3 O 4 -RGO的光催化活性分别比CO 3 O 4和RGO的光催化活性分别高2.13倍和3.43倍。同样,MO降解的Co 3 O 4 -RGO的光催化活性分别比CO 3 O 4和RGO的光催化活性分别高2.36倍和3.56倍。因此,发现CO 3 O 4 -rgo是一种有效且可重复使用的光催化剂,用于在水性培养基中所选染料的分解。
摘要I质子交换膜燃料电池(PEMFC)是一种电化学转化技术,可以通过利用氢能来产生电力和热量。PEMFC的效率很高,工作温度低,并且具有环境友好的性质,因此它强烈支持在日常需求中使用绿色能源。本研究的重点是使用修改后的犯罪方法,水渗液法和光doposis方法用于催化作用。vc和RGO变化是质量变化,第一个变化为0.1 gr pt:0.1 gr tio 2:0.1 gr vc:0.2 gr rgo,第二个0.1 gr pt:0.1 gr tio 2:0.1 gr tio 2:0.15 gr vc:0.15 gr rgo,0.15 gr rgo,第三次0.1 gr pt:0.1 gr pt:0.1 gr tio 2:0.1 gr tio 2:0.2 gr vc:0.2 gr vc:0.2 gr vc:0.2 gr rgo rgo通过循环伏击测试(CV)测试,在读取三个测试样品上的电流电压时获得了良好的结果,其中第三个变化显示了氧化和还原反应的范围。关键字:燃料电池,催化剂,PEMFC,PT/C,二氧化钛,合成,
由于电解质很难进入纳米多孔还原石墨烯(RGO)电极的纳米构固定空间,因此实现了这些设备的最佳电化学性能是一个挑战。在这项工作中,在电压控制的纳米孔RGO电极的电化学激活过程中研究了界面州现象的动力学,该电化学激活在人体能力和电化学障碍方面导致电化学性能增强。原位/操作表征技术用于揭示激活过程中引入的不可逆材料变化的动力学,包括纳米孔内的离子差异和水的构成,以及含氧组的还原和RGO Interlayer距离的减少。此外,操作技术用于揭示RGO电极的复杂极化依赖性动态响应的起源。研究表明,石墨烯基平面中剩余官能团的可逆质子化/去质子化和阳离子电吸附/解吸过程控制纳米孔RGO电极的假能性能。这项工作为纳米多孔RGO电极的电化学循环过程中发生的表面化学,离子实现和脱染过程之间的复杂相互作用带来了新的了解,从而为设计基于Nanoporor rgo的高强度电极设计了新的见解。
进一步规定,此类指定消费者将可以自由地按照商业原则供应可再生能源,不受其现有的煤炭/褐煤发电站购电协议 (PPA) 的影响。进一步规定,自备煤炭/褐煤发电站在履行中央政府通知的可再生能源消费义务的前提下,应免于遵守 RGO 的要求。进一步规定,任何拥有多个煤炭/褐煤发电站的发电公司应被允许在总体基础上遵守 RGO。进一步规定,任何指定消费者根据不时修订的“2022 年 4 月 12 日通过与可再生能源和储能捆绑实现火力/水力发电站发电和调度灵活性计划(可再生能源捆绑计划)”履行的义务应被视为履行 RGO 的一部分。 (ii) 应根据可再生能源发电量占年度总发电量的百分比来评估 RGO,其中包括由各自指定的消费者建立的以煤炭/褐煤为基础的发电站的常规发电量和可再生能源发电量。4. 监测和验证
nbslcnls Poly(vinylidene fluoride)/Cu@Ni Anchored Reduced-Graphene Oxide Composite Films with Folding Movement to Boost Microwave Absorption Properties Biao Zhao, 1, 2,# Luyang Liang, 3,# Zhongyi Bai, 1 Xiaoqin Guo, 1 Rui Zhang, 1, 3 Qinglong Jiang 4,* and Zhanhu Guo 5,*摘要详细研究了详细研究了详细研究了详细研究了详细研究了详细研究了详细研究了详细研究了聚(vinylidene氟化物)/rgo/cu@ni复合膜的氧化石墨烯(RGO)/cu@ni加载和可折叠结构的影响。PVDF/RGO/CU@Ni复合膜的微波吸收特性随RGO/CU@ni含量增加而增加,然后降低,这是由于阻抗匹配的变化所致。此外,发现可折叠结构在可调和强大的微波吸收中起决定性作用。对于可折叠的PVDF/20 wt%rgo/cu@ni,厚度为2.5毫米,可以获得-49.1 dB的最小反射损失,并且带宽(低于-20 dB,99%的耗散)可以达到6.4 GHz(18.5-19.3 ghz,20.7-26.7-26.5 ghz)。
在本研究中,研究了聚偏氟乙烯 (PVDF) /还原氧化石墨烯 (RGO) 纳米复合材料自支撑薄膜的非线性光学特性,以评估其作为有效光限幅器的适用性。采用溶液浇铸法将不同浓度的 RGO 作为填料与 PVDF 混合,生成 PVDF/RGO 纳米复合薄膜。这些纳米复合薄膜的 XRD 和 FTIR 数据证实了当 RGO 添加到 PVDF 中时 PVDF 的 b 相得到增强,这是增强纳米复合材料非线性响应的主要因素之一。采用纳秒激发(532 nm,7 ns)下的开孔径和闭孔径 Z 扫描技术研究 PVDF/RGO 纳米复合薄膜的非线性光学特性。发现这些薄膜在纳秒范围内表现出双光子吸收辅助光学非线性。本研究的亮点是在 PVDF/RGO 纳米复合材料的独立薄膜中观察到相当低的归一化透射率值和低光限制阈值功率。这些灵活、独立且稳定的纳米复合薄膜在设计任何所需尺寸或形状的高效光限制装置方面具有很高的应用前景。2017 Elsevier Ltd. 保留所有权利。