从几个角度(包括对艺术知识与OTNENS的更新)进行课程课程的修订是对当代需求和期望W.R.T.的动态过程重组。课程ot stuay ror学术课程。这种动态过程是由各自领域中日益增长的需求和当代进步驱动的。科学与创新研究学院(ACSIR)旨在培训和创造对学习态度积极态度的优质人力资源,从而导致博士学位专业化。课程教育。努力修改ACSIR博士学位。学习课程基本上是为了提供扩展和加深其知识,理解,发展能力和技能的机会。它也在教学,学习和课程持续时间的结构上强调,因此最早进入了学生的实验室研究阶段。在Acsir提供博士学位的五个学院的每个学术计划中,学术课程。学位由研究委员会(BOS)管理。核心课程的教学大纲是由这些领域的学院设计的,他们从事研究并教授了这些课程。除此之外,为了充分利用教师的专业知识及其在学生学习方面的研究经验,在每门课程中都会给予教师一些灵活性,以便他们可以介绍他们选择的一些特殊主题,从而使课程与众不同。高级课程通常由他们自己专业领域的教职员工提供。每个ACSIR学术中心都有其专业和专业知识领域。该课程的一般目标是,在成功完成它之后,学生将能够理解方法和技巧,发展知识和能力,以帮助他们在其选定的研究领域的研究计划中有助于他们的研究计划。此外,要支持学生了解博士学位期间面临的问题的性质。时期,通过一些创新的补救措施开发合适的跨学科科学方法,并学会解决它们。与研究学院列出的相同内容的相同头衔被修剪了,只有一个在最相关的教师中列出了课程序列号。
摘要。误差指标可用于评估模型的表现,并已在气候变化研究中广泛使用。尽管文字中有大量的错误指标,但大多数研究仅使用一个或两个指标。由于每个度量标准都评估了参考数据和模型数据之间关系的特定方面,因此将比较限制为仅一个或两个指标限制了从分析中得出的见解范围。本研究提出了一个称为卑尔根指标的新框架和复合误差指标,以总结气候模型的整体性能并减轻多个误差指标结果的相互作用。卑尔根指标的框架工作是基于P规范的,并且选择了第一规范来评估气候模型。框架工作包括将非参数聚类技术应用于多个错误指标,以减少误差指标的数量,而信息损失最小。通过将欧洲欧元倡议可提供的大型区域气候模拟集合应用于卑尔根指标的检查。这项研究计算了38个不同的误差指标,以评估89种欧洲降水和温度的气候模拟的性能。将非参数聚类技术用于这38个指标,以减少欧洲八个不同子区域用于卑尔根指标中使用的指标数量。这些提供了有关不同区域中误差指标的性能的有用信息。结果表明,在检查单个模型时,可以观察到误差指标之间的矛盾行为。因此,该研究还强调了采用多个指标的重要性,具体取决于特定用例,以彻底了解模型行为。
目的:本研究旨在通过使用美国FDA不良事件报告系统(FAERS)的数据进行药物守护性分析来研究非选择性RET激酶抑制剂与甲状腺功能障碍(TD)之间的潜在关联。方法:从FAERS数据库中获得非选择性RET MKI的数据,跨越2015年第一季度到2023年第四季度。不成比例分析用于量化与非选择性RET MKI相关的AE信号并识别TD AE。亚组分析和多元逻辑回归用于评估影响TD AES发生的因素。时间发作(TTO)分析和Weibull形状参数(WSP)测试。结果:描述性分析表明,与非选择性RET MKI相关的TD不良事件的趋势越来越大,报告的严重反应很明显。使用ROR,PRR,BCPNN和EBGM算法的不成比例分析始终显示出Sunitinib,Cabozantinib和Lenvatinib与TD不良事件之间的正相关。亚组分析基于年龄,性别和体重强调了对TD的差异敏感性,每个抑制剂都观察到了不同的模式。逻辑回归分析确定了独立影响TD不良事件发生的因素,强调了年龄,性别和体重在患者分层中的重要性。发出的时间分析表明用非选择性RET MKI治疗后TD不良事件的早期表现,随着时间的推移风险降低。结论:我们研究的结果表明使用非选择性RET MKI与TD AE的发生之间存在相关性。这可以为非选择性RET MKI的临床监测和风险识别提供支持。然而,需要进一步的临床研究来证实这项研究的结果。关键字:药物诱导的甲状腺功能障碍,非选择性RET MKIS,药物守流,FDA不良事件报告系统,临床监测
近几年来,随着超导器件在单个芯片上达到数十个甚至数百个量子比特,量子计算已成为现实 [1,2],它可以解决那些即使使用最强大的传统超级计算机也需要耗费大量时间的问题。这些早期的量子计算机 (QC) 被称为有噪声的中型量子计算机,因为在如此小的量子比特阵列中无法有效抵消环境噪声。虽然某些算法确实可以充分利用数百个不完美量子比特的潜力 [3],但量子计算的伟大前景需要完美量子比特,而这只能在更大规模的量子比特阵列中实现,使用量子纠错 (QEC) [4,5]。半导体中的自旋量子比特 [6,7] 是迄今为止唯一有潜力达到如此规模的平台,为容错量子计算铺平了道路。量子点 (QDs) [6] 中的量子比特尺寸为几十纳米,可在单个芯片上集成数百万个量子比特。硅纳米结构中的自旋量子比特是尤其有吸引力的候选对象。凭借半导体行业数十年的经验,硅是研究最多的元素之一,拥有独特先进的制造技术。硅中的电子自旋量子比特在过去几年中已非常成熟,已达到与 QEC 算法的误差阈值相匹配的单量子比特和双量子比特门保真度 [8, 9]。然而,导带中弱的本征自旋轨道相互作用 (SOI) 需要使用微磁体来辅助全电量子比特控制。这种额外的复杂性给设备设计和制造带来了新的挑战。另一方面,硅和锗量子点中的空穴自旋量子比特受益于强直接 Rashba SOI [10],可将量子比特控制速度加速到几百兆赫 [11,12],而无需在设备中集成其他元件。在本文中,我们首先介绍并简要概述
科威特:昨天,至少有两名议员反对科威特签署新的海湾合作委员会 (GCC) 反恐协议,据称该协议规定将公民引渡到其他 GCC 国家。但司法部长 Yaqoub Al-Sane 表示,几天前开会的 GCC 司法部长只是原则上接受了该协议,并补充说该协议不限制公众自由。他还表示,已经成立了一个委员会来审查该协议,以便部长们可以在 10 月 29 日的会议上签署该协议。在昨天科威特日报 Al-Jarida 发表的评论中,Sane 表示,他对 GCC 官员在最近多哈会议上签署的拟议条约受到的批评感到惊讶,并肯定了科威特对其公民利益的关注。“在任何情况下,政府都不会违反宪法规定,也不会通过任何可能违反宪法条款的协议,”他肯定道。根据拟议的协议,科威特有义务引渡另一个海湾合作委员会国家通缉的公民。这适用于科威特人身处海湾合作委员会其他成员国的情况。与此同时,在卡塔尔首都,每日《Al-Sharq》也发表了对科威特部长的采访,他表示,海湾合作委员会反恐法不会侵犯海湾合作委员会国家的自由。“我们向所有人保证,该法律不会侵犯我们认为是红线的自由,我绝对相信海湾合作委员会国家在其社会中倡导自由,”Sane 告诉卡塔尔报纸。但议员 Saleh Ashour 批评了该协议,他声称该协议规定移交科威特嫌疑人违反了宪法第 70 条。Ashour 想知道政府怎么能签署违反宪法的协议,比如海湾合作委员会反恐协议。该议员敦促其他议员投票反对该协议,因为它违反了宪法并压制了公众自由。续第 13 页
量子资源的使用可以让我们改进计算[1]、通信[2]和模拟[3, 4]中的各种经典任务。费曼在他的开创性著作中认识到,模拟或计算量子系统的复杂性随着组成系统的粒子数量的增加而呈指数增长[3]。当提出的解决方案是采用另一个可控量子系统来模拟未知系统的动力学时,我们称之为模拟量子模拟。后者已成功用于典型案例,例如量子拉比模型[5–7]、动态卡西米尔效应[8–10]、杰恩斯-卡明斯和拉比晶格[11–13]、费米子系统[14–18]以及最近的玻色子采样[19],仅举几例。此外,还可以实现数字量子模拟 [20],并产生许多有趣的应用 [21]。沿着这些思路,量子计算应运而生,量子图灵机的正式提出 [22, 23],具有量子加速的量子算法的发现 [24– 26],量子门的通用集 [27] 和量子纠错 [28–30]。鉴于这整个方法基于单量子比特门 (SQG) 和双量子比特门的算法序列 [31],因此可以称其为数字量子计算。在不同量子平台中这一范式的关键实现包括超导量子比特 [21, 32–34] 和离子阱 [35, 36] 中的实验。最近,参考文献 [1] 提出了一种创新的量子计算范式。 [37],其中引入了数字模拟量子计算 (DAQC)。DAQC 将提供多功能性的数字方法与增强抗误差能力的模拟方法相结合,在相同的 NISQ 设备中表现出比纯数字方法更好的可扩展性。该方法被用于提出量子傅里叶变换 [38] 和量子近似优化算法 (QAOA) [39] 的实际实现。
假设检验 (HT) [1] 和量子假设检验 (QHT) [2] 在信息 [3] 和量子信息论 [4] 中发挥着至关重要的作用。HT 与通信和估计理论都有着根本的联系,最终是雷达探测任务的基础 [5],而雷达探测已经通过量子照明 (QI) 协议 [6, 7] 扩展到量子领域,更准确地说,通过微波量子照明模型 [8](有关这些主题的最新综述,请参阅参考文献 [9])。HT 和 QHT 最简单的场景是二元决策,因此它们可以简化为两个假设(零假设 H 0 和备选假设 H 1 )之间的统计区分。从最基本的层面上讲,量子雷达是一项二元 QHT 任务。两个备选假设被编码在两个量子通道中,信号模式通过这两个量子通道发送。根据目标是否存在,信号模式的初始状态会经历不同的变换,从而在输出端产生两个不同的量子态。最终的检测就简化为区分这两种可能的量子态。能否以较低的错误概率准确地做到这一点,与能否确定正确的结果直接相关。这一基本机制可以轻松地通过几何测距参数进行增强,这些参数可以量化与目标的往返时间,即目标的距离。虽然 QI 雷达可能实现最佳性能 [10],但它们需要生成大量纠缠态,这可能是一项艰巨的任务,特别是如果我们考虑微波区域的话。同时,量子雷达的定义本身可以推广到 QI 以外的任何利用量子部件或设备在相同能量、范围等条件下超越相应经典雷达性能的模型。在这些想法的推动下,我们逐步放宽 QI 的纠缠要求,并研究相应的检测性能,直到源变得刚好可分离,即
;.r,e:ZOll Odobfl 201, f~ 0 ~o 0<:obet 2o:IO MAl fducollon l "'lt'l;:nlln11 lAI In StJo ,_gy 0w 0epa,lfn4tnl f_,lcal Us e of Al Prindp l •s to, Al S lfo .. gy he DoDM em c:, Memo lh e S:e,c, e lury of rectoM:d on v nctM:d on v nct, ~ , ,~. ~~ , ~~I The Deoutv Secrelarv ot Defense ,ecog 1f2ttt """"""Vollhe'l018 lf\t'IOvotiQ,, 8oon;l noe 0o0 la, n ,nlly l)ew,se reaffirm, the lhe impOtl tme& cl Oo agOi w11 ~DOi Alloch. OOOP11 lvenN overorc t,·~ OoO Al Elhic: ot P ,inc;pk>I new or>d ,.,, ,.,,g1no kicntlfiod one ot ib IN"• El lies Pd on~~~?~~ . Of ~e,r>oruil)je N , ram, on l lc [po iod in v,lng A l In O towflli ond non
(A) 果蝇 (Drosophila melanogaster) 和果蝇 (D. miranda) 中 Pten 基因组邻域的同源性比较。细箭头表示果蝇 (D. melanogaster) (上) 和果蝇 (D. miranda) (下) 中目标基因 Pten 所在的 DNA 链。指向右侧的细箭头表示 Pten 在果蝇 (D. miranda) 中位于正 (+) 链上,指向左侧的细箭头表示 Pten 在果蝇 (D. melanogaster) 中位于负 (-) 链上。指向与 Pten 相同方向的宽基因箭头相对于细箭头位于同一链上,而指向 Pten 反方向的宽基因箭头相对于细箭头位于反链上。果蝇 (D. miranda) 中的白色基因箭头表示与果蝇 (D. melanogaster) 中相应基因直系同源,而黑色基因箭头表示非直系同源。灰色箭头表示在两个基因组邻域中都存在但不是同源的基因(在本例中为 Ror),在 D. miranda 中位于 Pten 的上游,但在 D. melanogaster 中位于 Pten 的下游。D. miranda 基因箭头中给出的基因符号表示 D. melanogaster 中的直系同源基因,而基因座标识符是 D. miranda 特有的。(B)GEP UCSC Track Data Hub 中的基因模型(Raney 等人,2014)。D. miranda 中 Pten 的编码区显示在用户提供的轨道(黑色)中;CDS 用粗矩形表示,内含子用细线表示,箭头表示转录方向。后续证据轨迹包括果蝇 (D. melanogaster) 蛋白质的 Spaln(紫色,果蝇 (D. melanogaster) 的 Ref-Seq 蛋白质比对)、NCBI RefSeq 基因的 BLAT 比对(深蓝色,果蝇 (D. miranda) 的 Ref-Seq 基因比对)、TransDecoder 预测的转录本和编码区(深绿色)、成年雌性和成年雄性的 RNA-Seq(分别为红色和浅蓝色;果蝇 (D. miranda) 的 Illumina RNA-Seq 读段比对)以及使用果蝇 (D. miranda) RNA-Seq (SRP009365) 由 regtools 预测的剪接点。所示的剪接点具有最小读取深度 10,其中 10-49、50-99 和 100-499 支持读取分别以蓝色、绿色和粉色表示。 (C) 果蝇 Pten-PB(x 轴)与果蝇直系同源肽(y 轴)的点图。左侧和底部标明氨基酸编号;顶部和右侧标明 CDS 编号,CDS 也以交替颜色突出显示。点图中的间隙表示序列相似性较低的区域。
•'.HEKITOKIOVS- UNIT' cdMMENDATtO'N.-由 airecfio:n 'of t'lre Se