Hartmut Neven 及其同事介绍了最新一代超导量子处理芯片架构 Willow,该架构能够对低于特定量子纠错方法(称为表面代码)的临界阈值的量子纠错。他们的系统在几个小时内运行了多达 100 万个周期,同时实时解码错误并保持其性能。
本新闻稿包含联邦证券法的含义内的某些前瞻性陈述。本新闻稿中包含的所有与历史事实问题无关的陈述应被视为前瞻性陈述,包括但不限于发展,制造,制造,扩展和商业化的前景,以及实现Aurora驱动程序,相关服务和技术的潜在收益,我们期望或我们期望的或我们的时间范围的潜在收益,可能。这些陈述基于管理层的当前假设,既不是承诺也不是保证,而是涉及已知和未知的风险,不确定性和其他重要因素,这些因素可能导致我们的实际结果,绩效或成就与前景陈述所表达或暗示的任何未来结果,绩效或成就实质上不同。可能导致实际结果与本新闻稿中的前瞻性陈述有实质性差异的因素,请参阅Aurora Innovation的标题“风险因素”部分中确定的风险和不确定性,
快速增长的数据需要可靠且持久的存储解决方案。DNA由于其高信息密度和长期稳定性而成为一种有希望的媒介。但是,DNA存储是一个复杂的过程,每个阶段都会引入噪声和错误,包括合成错误,存储衰减和测序错误,它需要对错误校正的代码(ECC)才能获得可靠的数据恢复。要设计一种最佳数据恢复方法,对DNA数据存储通道中噪声结构的综合理解至关重要。由于在体外运行DNA数据存储实验仍然很昂贵且耗时,因此必须进行模拟模型,以模仿真实数据中的误差模式并模拟实验。现有的仿真工具通常依赖固定的误差概率或特定于某些技术。在这项研究中,我们提出了一个基于变压器的生成框架,用于模拟DNA数据存储通道中的错误。我们的模拟器将寡素(DNA序列写入)作为输入,并生成错误的输出DNA读取,与常见DNA数据存储管道的真实输出非常相似。它捕获了随机和有偏见的误差模式,例如K-MER和过渡错误,无论过程或技术如何。我们通过分析两个使用不同技术处理的数据集来证明模拟器的有效性。在第一种情况下,使用Illumina Miseq处理,由DDS-E-SIM模拟的序列显示出与原始数据集的总误率偏差仅为0.1%。第二次使用牛津纳米孔技术进行的偏差为0.7%。基本级别和K-MER错误与原始数据集紧密对齐。此外,我们的模拟器从35,329个序列中生成100,743个独特的橄榄岩,每个序列读取五次,证明了其同时模拟偏置错误和随机属性的能力。我们的模拟器以优越的精度和处理多种测序技术的能力优于现有的模拟器。
在测试中,研究小组还发现,随着逻辑量子比特数量的增加(在他们的案例中从 72 个跃升至 105 个),该算法在纠正错误方面的表现越来越好。研究小组指出,这一发现表明,增加更多的量子比特将进一步提高纠正能力,从理论上讲,这一方案可以开发出一种错误很少、真正有用的量子计算机。
量子计算的可行性在很大程度上取决于找到有效的量子误差校正 (QEC) 方案。从理论角度来看,QEC 是量子阈值定理 [ABO97] 的核心,而在实践中,它通常会导致昂贵的开销。部分成本可以归因于需要进行频繁的测量以诊断系统是否出现错误。根据所考虑的架构,这些测量可能难以实现,特别是对于仅限于局部交互的系统。因此,可以访问的可观测量空间受到计算机所在空间的限制。这一观察结果引出了以下自然问题:几何和量子误差校正性能之间的权衡是什么?在空间体积中可以可靠地存储多少信息?在这项工作中,我们表明,当使用量子误差校正时,仅限于几何局部操作和经典计算的架构会产生开销。具体来说,当限制为任意二维局部操作和自由经典计算时,我们表明,操作保护 k 个逻辑量子位的量子代码直至目标误差 δ ,所需的物理量子位数 m 满足
要了解对有效操作的需求,它有助于从量子电路的工作原理开始。量子电路是一系列逻辑操作步骤,该步骤在一组逻辑Qubits上运行。逻辑操作是门或一组门。与其他逻辑操作结合完成后,它们完成了程序或算法。电路的步骤越多,电路深度就越大。表面代码是汇编深度(即步骤数)的最佳类别。Photonic的新SHYPS代码可以以类似于Sur-Sur-face代码所获得的深度构成算法。这是非凡的,考虑到表面代码一直在开发和优化数十年。随着这些和其他QLDPC代码的研究和开发的继续,SHYPS效率的进一步提高。
本文研究了随机量子电路中的保真度衰减,重点是掉期操作。所考虑的模型交织了具有任意排列的2量门的层。作者分析了通过故障掉期门的组合实现的2 Quibit门和故障排列的效果。为了易于分析,该模型由可解决的模型替代,其中置换量用π→𝑅π𝑅取代,以从HAAR随机分布中取样。
多量子比特奇偶校验是许多量子纠错码的关键要求。与模块化架构兼容的长距离奇偶校验将有助于缓解量子设备在扩大尺寸时对量子比特连接性的要求。在这项工作中,我们考虑了一种架构,其中物理(代码)量子比特以固定自由度进行编码,并使用传播光脉冲的状态选择性相移来执行奇偶校验,由电磁场的相干态描述。我们优化了测量误差(随测量强度(由相干态中的平均光子数设定)减少)与代码量子比特上的误差(由于奇偶校验期间的光子损失而产生)之间的权衡,后者随测量强度的增加而增加。我们还讨论了这些奇偶校验在基于测量的远距离量子比特纠缠态制备中的应用。特别是,我们展示了如何使用三量子比特奇偶校验来准备六量子比特纠缠态。该状态可用作双量子位状态的受控量子隐形传态的通道,或作为共享随机性源,在三方量子密钥分发中具有潜在应用。
Rajendra Kurapati、Vincent Maurice、Antoine Seyeux、Lorena H Klein、Dimitri Mercier 等人。用于太空应用的银镜堆栈对环境退化的先进保护。材料科学与技术杂志,2020 年,先进耐腐蚀材料和新兴应用,64,第 1-9 页。�10.1016/j.jmst.2020.01.019�。�hal-02489359�
