摘要。开放式摄取分段是分割图像中可以命名的任何事物的任务。最近,大规模的视觉建模导致了开放式摄影片段的重大进展,但付出了巨大的成本,并增加了培训和注释工作。因此,我们询问是否可以使用现有的基础模型来合成特定类别集的按需有效分段算法,从而使其适用于开放式摄影库设置,而无需收集进一步的数据,注释或执行培训。为此,我们提出了Ovdiff,这是一种新颖的方法,它利用生成的文本对图像扩散模型来进行无监督的开放式摄影症。ovdiff合成支持任意文本类别的图像集,为每个类别及其周围环境(背景)创建一组原型。它仅依赖于预先训练的组件,并直接输出合成的分段,而无需训练。我们的方法在一系列基准上显示出很强的性能,在Pascal VOC上的先前工作中获得了超过5%的铅。
背景:心脏结构的分割是评估成像心脏的重要步骤。人们对霍蒂智能(AI)方法(尤其是深度学习(DL))的兴趣越来越大,可用于自动化这一过程。现有的心脏分割的AI方法主要集中在心脏MRI上。这项系统的审查旨在评估监督DL工具的性能和质量,以分割CT的心脏结构。方法:搜索EMBASE和MEDLINE数据库,以确定2013年1月1日至2023年12月4日的相关研究。2013年1月1日之后发表在同行评审期刊上的原始研究有资格纳入,如果他们提供了基于DL的基于DL的工具,用于对CT上的心脏结构进行分割和非冠状大船只的分割。从合格研究中提取的数据包括有关被分割的心脏结构,研究位置,DL体系结构和报告的性能指标,例如骰子相似性系数(DSC)。使用清单的医学成像中的人工智能清单评估了纳入的研究的质量(主张)。结果:包括2020年以后发表的18项研究。The DSC scores median achieved for the most commonly segmented structures were left atrium (0.88, IQR 0.83 – 0.91), left ventricle (0.91, IQR 0.89 – 0.94), left ventricle myocardium (0.83, IQR 0.82 – 0.92), right atrium (0.88, IQR 0.83 – 0.90), right ventricle (0.91,IQR 0.85 - 0.92)和肺动脉(0.92,IQR 0.87 - 0.93)。与索赔的研究合规性是可变的。特别是,只有58%的研究表明符合数据集说明标准,大多数研究未在外部数据(81%)上测试或验证其模型。结论:监督的DL已应用于CT上各种心脏结构的分割。大多数表现出与DSC值测量的相似性能。现有研究受到培训数据集的规模和性质的限制,对地面真相注释的描述不一致以及在外部数据或临床环境中缺乏测试。
Sanjay Aneja 15, Syed Muhammad Anwar 16, Timothy Bergquist 17, Veronica Chiang 18, Verena Chung 13, Gian Marco Conte 17, Farouk Dako 19, James Eddy 13, Ivan Ezhov 20, Nastaran Khalili 21, Keyvan Farahani 22, Juan Eugenio Iglesias 23, Zhifan Jiang 24, Elaine Johanson 25, Anahita Fathi Kazerooni 21,26,27, Florian Kofler 28, Kiril Krantchev 2,,,, Dominic LaBella 29, Koen Van Leemput 30、α Hongwei Bran Li 23、α Marius George Linguraru 16,31、α Xinyang Liu 24、α Zeke Meier 32、α Bjoern H Menze 33、α Harrison Moy 2、α、β、ϵ Klara Osenberg 2、α、β Marie Piraud 34、α Zachary Reitman 29、α Russell Takeshi Shinohara 35、α Chunhao Wang 29、α Benedikt Wiestler 28、α Walter Wiggins 36、α Umber Shafique 37、α、η Klara Willms 2、β
人工智能 (AI) 在医学成像任务中取得了巨大成果,并有可能在未来改善临床医生和患者的体验,但在将 AI 融入医学的道路上,存在许多实际、技术和社会挑战。在本文中,我们为 Helse Vest 的 AI 集成开发做出了贡献,并提出了一种与其现有研究 PACS 解决方案集成的脑肿瘤分割系统。我们调查了目前机器学习模型集成的可能性程度,以及是否需要额外的软件开发工作。所使用的机器学习模型是使用结合两个基于 Python 的深度学习库 fastai 和 MONAI 的库开发的。该库目前由 Mohn 医学成像和可视化中心 (MMIV) 的研究人员开发,我们将它与另一个最先进的框架进行比较,以量化其潜在的实用性。此外,我们将其部署在一个简单的交互式 Web 应用程序中。本论文包含三项研究,旨在讨论和回答我们的研究目标。所有研究均使用了 BraTS 2021 分割挑战赛数据集中的医疗数据,我们的项目是 MMIV 的 WIML 项目 [1] 的一部分。我们取得的成果为未来的开发人员在研究 PACS 中继续进行工作流集成机器学习开辟了道路,我们看到了未来研究的许多可能方向。
摘要:在计算机视觉领域,图像分割通过将复杂的图像划分为不同的段或区域,从而起着至关重要的作用。此过程可以对各种应用程序进行更深入的分析和对视觉数据的理解。我们的项目着重于通过最先进的机器学习技术来推进图像细分。通过利用深度学习,尤其是U-NET及其变体等卷积神经网络(CNN),我们的方法旨在实现高度精确的细分。除了单纯的像素分类之外,我们的目标是生成复杂的面具,以准确描述每个图像中的边界和结构。这项努力不仅旨在实现技术卓越的目标,而且还努力模仿类似人类的知觉,确保我们的模型可以有效地处理多样化和细微的视觉信息。
摘要。脑肿瘤分类是一项重要的任务,用于评估肿瘤并根据其类别选择治疗类型。脑肿瘤的诊断需要多种成像技术。然而,MRI 经常被使用,因为它提供更高的图像质量并使用非电离辐射。深度学习 (DL) 是机器学习的一个子领域,最近表现出令人印象深刻的性能,特别是在分割和分类问题方面。基于卷积神经网络 (CNN),本研究提出了一种混合深度学习网络 (HDLN) 模型,用于对多种类型的脑肿瘤进行分类,包括神经胶质瘤、脑膜瘤和垂体瘤。Mask RCNN 用于脑肿瘤分类。我们使用挤压和激励残差网络 (SE-ResNet) 进行脑肿瘤分割,这是一个带有挤压和激励块的残差网络 (ResNet)。使用公开的研究数据集测试所提出的模型进行实验分析,获得了 98.53% 的总体准确率、98.64% 的灵敏度和 98.91% 的特异性。与最先进的分类模型相比,所提出的模型获得了最好的准确率。对于多类脑肿瘤疾病,所提出的 HDLN 模型显示出其优于现有方法。
在包含胶质母细胞瘤的 MRI 图像中,我们考虑了全自动脑肿瘤分割的问题。我们建议采用 3D MedImg-CNN(三维卷积神经网络)方法,该方法在实现高效率的同时实现了高结果,这是当前技术难以实现的组合。我们的 3D MedImg-CNN 直接在原始图像模态上形成,因此可以直接从数据中学习特征表示。我们建议采用两种通路的新型级联架构,每种通路都提供肿瘤细节模型。充分利用我们模型的卷积特性也有助于我们在一分钟内分割出完整的大脑图像。建议的 3D MedImg-CNN 与 CNN 分割系统的效率是使用骰子相似系数 (DSC) 确定的。在 2013 年、2015 年和 2017 年 BraTS 数据集上进行的实验表明,所提出的方法在文献中占主导地位,因为它是最有效的方法之一。关键词 脑肿瘤、卷积神经网络、深度学习、分割
1 计算机工程系,1 通用工程学院,瓦塞,印度 摘要:脑肿瘤分割在医学图像处理中起着重要作用。脑肿瘤的早期诊断有助于改善治疗可能性并提高患者的存活率。从医疗常规生成的大量 MRI 扫描中手动分割脑肿瘤可能非常耗时。这导致需要一个自动脑肿瘤图像分割系统来进行顺利诊断。从磁共振成像 (MRI) 扫描中定位和分割脑肿瘤对于医学分析领域的多种应用来说是一项艰巨而重要的任务。每种脑成像模态都提供与肿瘤每个部分相关的独特和关键细节。许多最近的方法使用了四种模态,即 T1、T1c、T2 和 FLAIR。NeuroVision 是一个灵活有效的脑肿瘤分割和可视化 Web 应用程序。该系统使用基于 CNN 的 UNET 模型进行脑肿瘤分割并显示不同的肿瘤区域。其次,使用 Python 图形库以 2-D、3-D 和 360 度视图可视化肿瘤的不同区域。生成的医疗报告包括肿瘤在脑内的位置和肿瘤相对于脑的占有率。在 BRATS 2020 数据集上进行了全面的实验,结果表明,所提出的模型获得了有竞争力的结果。所提出的方法分别实现了平均整个肿瘤、增强肿瘤和肿瘤核心骰子得分 88.3%、75.3% 和 79.0%。索引术语 - 脑肿瘤、UNET、BRATS、MRI、分割、可视化、模态、骰子得分。I. 介绍脑肿瘤是一组异常细胞以不受控制的方式繁殖的阶段。磁共振成像 (MRI) 是一种非侵入性测试,医生可以使用它来诊断患者的病情。 MRI 提供高分辨率和软组织高对比度的图像。MRI 提供有关脑肿瘤形状、大小和位置的重要信息,以便对患者进行有效的诊断和治疗计划。因此,脑肿瘤医学领域的大部分研究都是使用 MRI 图像进行的。可以创建各种 MRI 模式,这些模式可以称为加权图像。这些模式是 T1 加权、T2 加权、T1c 和液体衰减反转恢复 (FLAIR)。T1 加权图像在脑组织的灰质和白质之间具有高对比度,这有助于更好地分割脑肿瘤。T1 加权对比度增强了 T1 图像,而 FLAIR 使肿瘤区域变得高强度,这就是它用于脑肿瘤结构诊断的原因。研究需求 MRI 图像代表了诊断和治疗计划中一项关键且具有挑战性的任务,有助于准确分割脑肿瘤。图像分割是医学成像中的一个动态领域,包括从图像中提取一个或多个肿瘤区域,这使得肿瘤区域对治疗很有吸引力。为了进行脑肿瘤检测,文献中已经开发了各种算法,包括基于阈值的方法、基于区域的方法、可变形方法、分类方法和深度学习。但在这项工作中,UNET 已用于脑肿瘤的检测和分割。图像可视化在医学领域也起着非常重要的作用。这有助于确定治疗或手术的可能结果。医疗专业人员可以很容易地与患者沟通他们的问题是什么以及如何治疗。因此,脑肿瘤的检测、分割、可视化以及肿瘤占据了大脑某个区域的百分比,所有这些过程都在一个名为 NeuroVision 的平台上执行。可以使用脑肿瘤分割从健康脑组织中提取肿瘤区域并检测脑肿瘤。因此,肿瘤可以有不同的大小和位置,准确有效地分割肿瘤成为一项具有挑战性的任务。肿瘤可以具有各种外观特性,例如其结构可以是非刚性的并且可以具有复杂的形状。
脑微出血是低信号的、小的、圆形或卵圆形的病变 [1, 2];在具有梯度回波、T2* 或磁敏感加权 (SWI) 成像的磁共振成像 (MRI) 上可见 [3, 4, 5]。脑微出血的评估主要通过目视检查进行,使用经过验证的评分量表,例如微出血解剖评分量表 (MARS)[6] 或脑观察者微出血量表 (BOMBS)[7]。在过去十年中,在深度学习技术在医学图像分析中兴起之前 [8],已经开发出用于辅助脑微出血检测的半自动化工具。这些包括基于统一分割 [9]、支持向量机 [10] 或径向对称变换 [11, 12, 13] 的技术。近年来,由于深度学习技术的巨大进步,全自动微出血检测方法的数量大幅增加[14、15、16、17、18]。在本文中,我们探索使用 nnU-Net[19] 作为微出血分割的全自动工具。这种基于深度学习的自配置语义分割方法在许多国际生物医学分割竞赛中表现出色[20],但尚未应用于脑微出血检测和分割任务。