背景:心脏结构的分割是评估成像心脏的重要步骤。人们对霍蒂智能(AI)方法(尤其是深度学习(DL))的兴趣越来越大,可用于自动化这一过程。现有的心脏分割的AI方法主要集中在心脏MRI上。这项系统的审查旨在评估监督DL工具的性能和质量,以分割CT的心脏结构。方法:搜索EMBASE和MEDLINE数据库,以确定2013年1月1日至2023年12月4日的相关研究。2013年1月1日之后发表在同行评审期刊上的原始研究有资格纳入,如果他们提供了基于DL的基于DL的工具,用于对CT上的心脏结构进行分割和非冠状大船只的分割。从合格研究中提取的数据包括有关被分割的心脏结构,研究位置,DL体系结构和报告的性能指标,例如骰子相似性系数(DSC)。使用清单的医学成像中的人工智能清单评估了纳入的研究的质量(主张)。结果:包括2020年以后发表的18项研究。The DSC scores median achieved for the most commonly segmented structures were left atrium (0.88, IQR 0.83 – 0.91), left ventricle (0.91, IQR 0.89 – 0.94), left ventricle myocardium (0.83, IQR 0.82 – 0.92), right atrium (0.88, IQR 0.83 – 0.90), right ventricle (0.91,IQR 0.85 - 0.92)和肺动脉(0.92,IQR 0.87 - 0.93)。与索赔的研究合规性是可变的。特别是,只有58%的研究表明符合数据集说明标准,大多数研究未在外部数据(81%)上测试或验证其模型。结论:监督的DL已应用于CT上各种心脏结构的分割。大多数表现出与DSC值测量的相似性能。现有研究受到培训数据集的规模和性质的限制,对地面真相注释的描述不一致以及在外部数据或临床环境中缺乏测试。
主要关键词