摘要由于磁共振成像(MRI)具有较高的软组织对比度,因此在MRI图像中,对肿瘤的轮廓(脑)肿瘤在医学图像过程中至关重要。对肿瘤进行精确分割是巨大的挑战,因为肿瘤和正常组织通常在大脑中密不可分地交织在一起。手动耗时也非常耗时。后期的深度学习技术开始在脑肿瘤分割中表现出可取得的成功。这项研究的目的是开发一种新的兴趣区域(ROI ADED)深度学习技术,用于自动脑肿瘤MRI分割。该方法由两个主要步骤组成。第一步是使用具有U-NET结构的2D网络来定位肿瘤ROI,这是为了产生正常组织干扰的影响。然后,在第2步中执行3D U-NET,以进行识别的ROI内的肿瘤分割。该提出的方法在MIC-CAI BRATS 2015挑战中得到了验证,其中220个高神经胶质瘤级(HGG)和54个低神经胶质瘤级(LGG)患者的数据。骰子相似性系数和手动肿瘤轮廓之间的Hausdorff距离分别为0.876±0.068和3.594±1.347 mm。这些数字表明我们所提出的方法是用于大脑MRI肿瘤分割的有效的ROI ADEAD深度学习S,并且是医学图像处理中的有效且有用的工具。
摘要 - 图像的细分在医疗,军事,监视等领域都有广泛的应用。这项工作段用于检测大脑中肿瘤的医学共振图像,其中工作中的三个部分都在图像中识别出三个部分。首先是头骨,第二是大脑,第三是肿瘤。介绍的论文包括以无监督的方式对图像分割的描述,其中建议的模型在没有任何训练的情况下确定图像的所有段。在这里,Wiener Filter通过从图像矩阵中删除不需要的信息来预处理输入图像。过滤的图像然后以智能水滴(IWD)遗传算法传递,用于查找图像段的代表性像素值集。IWD算法中的图形水滴运动具有代表性像素值设置的选择精度。 实验是在脑肿瘤的实际数据集中进行的,检测是通过参考地面真相图像来完成的。 建议的模型评估了平均精度值0.98和平均准确度为96%。 因此,当将结果与现有方法进行比较时,就可以获得建议的分割工作增加了分割评估参数值。IWD算法中的图形水滴运动具有代表性像素值设置的选择精度。实验是在脑肿瘤的实际数据集中进行的,检测是通过参考地面真相图像来完成的。建议的模型评估了平均精度值0.98和平均准确度为96%。因此,当将结果与现有方法进行比较时,就可以获得建议的分割工作增加了分割评估参数值。
现代生活的几乎所有方面都取决于太空技术。多亏了计算机视频的一般和深度学习技术的巨大进步,几十年来,全世界都见证了将深度学习的发展用于解决太空问题的问题,例如自动驾驶机器人,诸如示踪剂,类似昆虫的机器人,类似昆虫的机器人和SpaceCraft的健康监测。这些只是一些在深度学习的帮助下具有高级空间行业的重要例子。但是,深度学习模型的成功需要大量的培训数据才能具有不错的性能,而另一方面,用于培训深度学习模型的公开空间数据集非常有限。当前没有用于基于太空的对象检测或实例分割的公共数据集,部分原因是手动注释对象分割掩码非常耗时,因为它们需要像素级标签,更不用说从空间获取图像的挑战了。在本文中,我们的目标是通过释放数据集以进行航天器检测,实例分割和零件识别来填补这一差距。这项工作的主要贡献是使用太空设置和卫星的图像开发数据集,并具有丰富的注释,包括绑定的航天器和口罩的框架盒对物体部分的水平,这些盒子是通过自动程序和手动努力的混合而获得的。我们还提供了对象检测和Intance Sementation的最新方法作为数据集的基准。可以在https://github.com/yurushia1998/satellitedataset上找到下载建议数据集的链接。
摘要 - 电子显微镜图像中轴突和髓磷脂的分割使神经科医生可以突出轴突的密度和周围髓磷脂的厚度。这些特性对于预防和预测白质疾病具有极大的兴趣。通常手动执行此任务,这是一个漫长而乏味的过程。我们提出了用于通过机器学习计算该细分的方法的更新。我们的模型基于U-NET网络的体系结构。我们的主要贡献包括在u-Net网络的编码器部分中使用转移学习,以及分割时测试时间增加。我们使用在Imagenet 2012数据集中预先训练的Se-Resnet50骨干重量。我们使用了23张图像的数据集,其中包括相应的分段掩模,这也是由于其极小的尺寸而具有挑战性的。结果表明,与最先进的表演相比,测试图像的平均精度为92%。也必须注意,可用样品是从call体的老年人中取的。与从脊髓或健康个体的视神经中采集的样品相比,这是一种额外的困难,具有更好的轮廓和碎屑较少。索引术语 - 深度学习,分割,髓磷脂,轴突,G比,卷积神经网络(CNN),电子显微镜
摘要 使用人工智能从 MRI 图像中检测和描绘脑肿瘤是医学 AI 面临的一项复杂挑战。最近的进展见证了各种技术被用于协助医疗专业人员完成这项任务。尽管机器学习算法在分割肿瘤方面很有效,但它们在决策过程中缺乏透明度,阻碍了信任和验证。在我们的项目中,我们构建了一个可解释的 U-Net 模型,专门用于脑肿瘤分割,利用梯度加权类激活映射 (Grad-CAM) 算法和 SHapley 加法解释 (SHAP) 库。我们依靠 BraTS2020 基准数据集进行训练和评估。我们采用的 U-Net 模型产生了有希望的结果。然后,我们利用 Grad-CAM 在图像中可视化模型关注的关键特征。此外,我们利用 SHAP 库来阐明用于预测患者生存天数的各种模型(包括随机森林、KNN、SVC 和 MLP)的预测,从而增强了可解释性。
由于电动汽车和电池储能系统的重要性日益严重,因此必须在生产过程中和生产后确保电池安全性。一个方面是内部结构的可视化,可以通过计算机断层扫描(CT)作为一种非破坏性测试(NDT)方法来实现。深度学习工具可以快速学习和执行不同的图像处理任务。但是,在大多数设置中,生成训练这些工具所需的标记数据很昂贵。因此,这项工作通过逐步学习(GL)解决了CT体积中阳极和阴极的分割,该技术仅需要单个注释的体积切片。该技术利用了相邻切片之间的高相似性,并应用于电池堆栈细胞和圆柱形细胞。对于堆栈细胞,使用了平移相似性,这导致平均增益比联合(IOU)点相交0.09。对于圆柱细胞,提出了沿旋转中心切片的顺序分割。这导致GL应用之前的堆栈单元的较高初始IOU为0.78 vs. 0.73。对于圆柱细胞类型的GL的IOU增益为0.01 iOU点较小,但由于去除其余的伪影时,定性样品显示出改善。
脑肿瘤的特征是脑组织异常生长,因其对全球发病率和死亡率的影响而成为一项重大的医学挑战。脑肿瘤有多种表现形式,从良性到恶性,后者尤其具有侵袭性且易于转移 (1)。脑肿瘤的病因复杂,包括放射线暴露、遗传易感性和家族史等因素,因此需要早期发现和准确诊断 (2)。在脑肿瘤诊断领域,磁共振成像 (MRI) 因其更高的空间分辨率和软组织对比度而成为优于计算机断层扫描 (CT) 的检查方式。这使得 MRI 成为脑肿瘤病例术前评估、治疗管理和生存预测所必需的 (3)。然而,MRI 扫描中传统的手动分割方法虽然是黄金标准,但却存在固有的效率低下和主观差异性,因此有必要探索自动化技术 (4、5)。近年来,深度学习模型(例如 Ma 等人提出的模型)在自动脑肿瘤分割方面取得了重大成功。这些模型擅长捕捉局部和全局上下文特征,但通常会遇到梯度消失和过拟合的问题,尤其是在较深的网络层中。Kumar 等人(7)通过将 ResNet50 与全局平均池化相结合来解决这些问题,以增强各种肿瘤类型的肿瘤分类。在此基础上,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。
1。引言语义细分是计算机视觉和机器学习领域中的关键方面,在一系列应用程序中具有实质性的重要性。这个复杂的过程涉及图像或体积数据中单个像素或体素的细致标记,从而促进了指定的视觉上下文中不同对象类的识别[1]。语义分割中固有的方法学上的精确度使计算系统不仅可以识别和分类图像的内容,还可以为每个像素或体素分配语义含义,从而增强对手头视觉信息的整体理解。在诸如自主驾驶[2],室内导航[2],环境监测[3],映射[4],虚拟现实系统和增强现实系统[5]等应用程序中,对高性能语义分割的需求显着飙升。图像或体积数据中对象的准确描述对于增强这些技术的沉浸式体验和功能至关重要。但是,语义细分领域面临着需要解决的几个挑战,以确保其有效性。这些挑战包括实现准确和实时的分割[6],处理具有不同复杂性的不同数据集,并适应了二维(2D)和3D上下文。克服这些挑战对于成功地部署了依靠语义细分的尖端应用程序[7]至关重要。本文旨在通过提供针对语义细分的深度学习技术的全面概述来应对这些挑战。它探讨了2D和3D分割之间的区别[8],讨论了主要数据集及其复杂性,并调查专门用于语义分割的神经网络体系结构。
I.引言肿瘤本质上是一块密集的组织,当异常细胞聚集并可能对周围骨骼,组织,皮肤,腺体和器官产生影响。此外,这可能是良性,预签名或癌变。身体组织的这种异常生长可以在大脑中开始生长,或者作为体内其他地方的癌质量,可以传播到大脑,导致脑肿瘤。这些肿瘤在大脑中存在时可能会根据其位置和起源而变化。原发性脑肿瘤(无论是否恶性)在大脑内形成。它们分为两组:神经胶质(包括神经胶质细胞和非神经元细胞)和非胶质(在大脑或神经元细胞的结构上或在结构上开发)。它们也可能从脑膜,颅神经,垂体或松果体附近的组织开始。当健康细胞在其DNA中发生变化(突变)时,它们就会出现。继发性脑肿瘤(通常称为转移性脑癌)是由已经扩散到人体的其他器官和身体区域的癌症而发育的,其肿瘤细胞已移至大脑并在那里扩散。肺癌,乳腺癌,肾癌和黑色素瘤皮肤癌等是最普遍的形式。治疗也不同于肿瘤的性质和位置。神经胶质瘤分为四类,具体取决于脑肿瘤的侵略性:1年级和2年级的脑肿瘤是良性或非癌性的。3年级和4年级的脑肿瘤是癌变的(恶性);他们迅速传播,对待Being less common than malignant tumors, benign tumors include Hemangioblastomas (slow- growing tumors that originate from blood vessels and are found in the cerebellum), Chordomas (slow- growing tumors that are most common in people between the ages of 50 and 60 and frequently found at the base of the skull and the lower portion of the spine), Meningiomas (which originate from the meninges, the membrane-like structures围绕大脑和脊髓),神经神经胶质瘤,胶质母细胞瘤(也称为4级星形胶质细胞瘤),desp膜瘤(由腹心膜系统的肿瘤变化导致),而甲状腺膜状细胞的肿瘤细胞以及最普遍的恶性肿瘤(通常是高度的恶性肿瘤),通常是Arise arise Arise arise arise and arise arise and arise and arise and arise and arise ins arise in arise in arise ins and arise。
摘要在本文中,我们考虑了从机器人箱拾取设置中从RGB或灰度相机图像中分割多个实例的问题。用于解决此任务的先前方法通常是在Mask-RCNN框架上构建的,但是它们需要大量注释的数据集进行填充。取而代之的是,我们在几个拍摄设置中考虑任务,并在trinseg中考虑了基于mask-rcnn的透明对象的数据效率和健壮的实例分割方法。我们在trinseg中的关键创新是双重的:i)一种被称为transmixup的新颖方法,用于使用合成透明的对象实例生成新的训练图像,该图像是通过空间转换带注释的示例创建的; ii)一种评分理想对象模板的预测段和旋转之间一致性的方法。在我们的新评分方法中,空间转换是由辅助神经网络产生的,然后将得分用于填充不一致的实例预测。为了证明我们方法的效果,我们介绍了一个新的几种数据集的实验,该数据集由七个类别的非偏见(透明和半透明)对象组成,每个类别的大小,形状和透明度的透明度变化。我们的结果表明,Trinseg实现了最先进的性能,在MIOU中提高了14%以上的细化面膜RCNN,同时需要很少的带注释的培训样本。