1俄勒冈州立大学土木与建筑工程学院助理教授(高级研究),俄勒冈州立大学101号,科尔瓦利斯SW校园之路1491号,俄勒冈州科瓦利斯。电子邮件:erzhuo.che@oregonstate.edu 2俄勒冈州立大学民用与建筑工程学院教授,101 Kearney Hall,1491 SW Campus Way,Corvallis,Corvallis,97331。电子邮件:michael.olsen@oregonstate.edu
高光谱成像为分析人工生态系统中地上植物的特征提供了强大的工具,能够提供涵盖不同波长的丰富光谱信息。本研究提出了一种高效的高光谱数据分割和后续数据分析流程,通过使用稀疏混合尺度卷积神经网络集成,最大限度地减少了用户注释的需求。分割过程利用集成的多样性,以最少的标记数据实现高精度,从而减少了劳动密集型的注释工作。为了进一步增强稳健性,我们结合了图像对齐技术来解决数据集的空间变异性问题。下游分析侧重于利用分割数据处理光谱数据,从而实现植物健康状况的监测。该方法为光谱分割提供了一种可扩展的解决方案,并有助于在复杂受控环境中对植物状况进行切实可行的洞察。我们的研究结果证明了将先进的机器学习技术与高光谱分析相结合,可以实现高通量植物监测。
在本文中,我们提出了一种新型的两组分损失,用于生物医学图像分割任务,称为实例和实例中心(ICI)损失,这是一种损失函数,在使用像素损失功能(例如骰子损失)时,通常会遇到实例不平衡问题。实例组件改善了具有大型和小实例的图像数据集中的小实例或“斑点”的检测。实体中心组件提高了整体检测准确性。我们使用ATLAS R2.0挑战数据集的Miccai 2022。与其他损失相比,ICI损失提供了更好的平衡分段,并以改进1的改善而显着超过了骰子损失。7-3。7%,斑点损失为0。6-5。0%的骰子相似性系数在验证和测试集中,这表明ICI损失是实例不平衡问题的潜在解决方案。关键字:实例和实体中心细分损失,细分损失。
脑肿瘤是由于细胞不受控制地生长而产生的异常组织肿块。脑肿瘤通常会缩短寿命并在后期导致死亡。自动检测脑肿瘤是计算机辅助疾病诊断系统中一项具有挑战性且重要的任务。本文提出了一种基于深度学习的脑肿瘤分类方法。使用边缘方向总变分去噪去除脑 MRI 图像中的噪声。使用超像素融合的 SLIC 分割对脑 MRI 图像进行分割。将分割结果提供给经过训练的 GoogleNet 模型,该模型可识别图像中的肿瘤部分。一旦识别出肿瘤,便使用基于卷积神经网络 (CNN) 的改进语义分割模型对肿瘤段边缘的像素进行分类。改进的语义分割使用像素的线性邻域来进行更好的分类。由于边界处的像素被准确分类,因此最终识别出的肿瘤是准确的。实验结果表明,该方法在 GoogleNet 分类模型中的准确率为 97.3%,线性邻域语义分割的准确率为 98%。
和 CISA 建议使用 IPsec VPN。特别是经过测试和验证并列入国家信息保障伙伴关系 (NIAP) 产品合规列表 的 IPsec VPN 产品。基于 TLS 的 VPN 缺乏标准化,无法客观衡量其保障,目前不建议用于通用 IP 流量的隧道传输。使用此选项的组织可以将其云租户配置为仅接受来自 VPN 的连接。然后,他们可以使用 VPN 集中管理访问并记录和监控网络流量,为组织提供额外的安全层和对其云租户使用情况的可见性。有关 VPN 的更多指导,请参阅 NSA 的报告:选择和强化远程访问 VPN 解决方案、网络基础设施安全指南和配置 IPsec 虚拟专用网络。[4]、[5]、[6] 组织可以使用 VPN 来保护客户端与租户的连接以及与云资源的连接。虽然它们不是执行此操作的唯一机制,但 VPN 是确保在整个组织内一致执行加密要求的不错选择。
医学图像细分(MIS)在医疗治疗计划和机器人导航中起着至关重要的作用。MIS中的原型学习方法专注于通过像素型锻炼比较生成分割面具。然而,电流通常通过使用语义类别使用固定的原型来忽略样本多样性,并忽略每个输入中的类内部变化。在此pa-per中,我们建议为MIS生成实例自适应的预型,该预型集成了一个常见的原型建议(CPP)捕获常见的视觉效果和量身定制的实例特定于实例的原型建议(IPP)。为了进一步说明类内的变化,我们建议通过根据其置信度得分重新加权中间特征图来指导IPP生成。使用变压器解码器,这些置信度得分是分层的。此外,我们还引入了一种新颖的自我监督过滤策略,以优先考虑变压器解码器训练期间的前景像素。广泛的实验表明我们的方法表现出色。
平滑标签分配已成为训练犯罪模型的流行策略。然而,大多数现有方法通常是为分类任务而设计的,忽略了密集的预测问题的潜在属性,例如医疗图像分割。首先,这些策略通常忽略给定像素及其邻居之间的空间关系。和第二,与每个标签相关的图像上下文都被忽略了,这可以传达有关分割掩模中潜在错误或歧义的重要信息。为了解决这些局限性,我们在这项工作中提出了Geodesic标签平滑(GEOLS),该工作通过利用图像的地理距离变换来将图像信息整合到标签平滑过程中。作为生成的标签分配基于计算的测量图,软标签中的类别关系是更好的建模,因为它考虑了两个或多个类别的边界的图像梯度。此外,空间像素的关系是在地球差异转换中捕获的,比诉诸于像素之间的欧几里得距离更丰富的信息。我们在两个公开可用的分割基准标记上评估了我们的方法,并将它们与流行的分割损失函数进行比较,该功能直接修改标准硬牌分配。所提出的测量标签的平滑性提高了现有软标记策略的分割精度,证明将图像信息整合到标签平滑过程中的有效性。重现我们的结果的代码可在以下网址获得:https://github.com/adigasu/geols关键字:图像分割,地球距离,标签平滑
扩散概率模型 (DPM) 近期成为计算机视觉领域最热门的话题之一。其图像生成应用(如 Imagen、潜在扩散模型和稳定扩散)已展示出令人印象深刻的生成能力,引发了社区的广泛讨论。此外,许多近期研究发现 DPM 可用于多种其他视觉任务,包括图像去模糊、超分辨率和异常检测。受 DPM 成功的启发,我们提出了 MedSegDiff,这是第一个基于 DPM 的用于一般医学图像分割任务的模型。为了增强用于医学图像分割的 DPM 中的逐步区域注意力,我们提出了动态条件编码,它为每个采样步骤建立状态自适应条件。此外,我们提出了特征频率解析器 (FF-Parser) 来消除此过程中高频噪声成分的负面影响。我们在三种不同图像模态的医学分割任务上验证了 MedSegDiff 的有效性,包括眼底图像上的视杯分割、MRI 图像上的脑肿瘤分割和超声图像上的甲状腺结节分割。我们的实验结果表明,MedSegDiff 的表现比最先进的 (SOTA) 方法有相当大的性能差距,证明了所提模型的泛化和有效性。关键词:扩散概率模型、医学图像分割、脑肿瘤、视杯、甲状腺结节
尽管深度神经网络推动了视觉识别任务的进步,但最近的证据表明,这些模型校准不佳,导致预测过于自信。在训练期间最小化交叉熵损失的标准做法促使预测的 softmax 概率与独热标签分配相匹配。然而,这会产生正确类别的预 softmax 激活,该激活明显大于其余激活,从而加剧了校准错误问题。最近从分类文献中观察到,嵌入隐式或显式最大化预测熵的损失函数可产生最先进的校准性能。尽管有这些发现,但这些损失在校准医学图像分割网络的相关任务中的影响仍未得到探索。在这项工作中,我们提供了当前最先进的校准损失的统一约束优化视角。具体来说,这些损失可以看作是线性惩罚(或拉格朗日项)的近似值,对 logit 距离施加了等式约束。这指出了这种底层等式约束的一个重要限制,其随后的梯度不断推向无信息解决方案,这可能会阻止在基于梯度的优化过程中在判别性能和模型校准之间达到最佳折衷。根据我们的观察,我们提出了一种基于不等式约束的简单而灵活的泛化方法,它对 logit 距离施加了一个可控的边际。在各种公共医学图像分割基准上进行的全面实验表明,我们的方法在网络校准方面为这些任务设定了新的最先进的结果,同时判别性能也得到了改善。代码可在 https://github.com/Bala93/MarginLoss 获得