Loading...
机构名称:
¥ 1.0

尽管深度神经网络推动了视觉识别任务的进步,但最近的证据表明,这些模型校准不佳,导致预测过于自信。在训练期间最小化交叉熵损失的标准做法促使预测的 softmax 概率与独热标签分配相匹配。然而,这会产生正确类别的预 softmax 激活,该激活明显大于其余激活,从而加剧了校准错误问题。最近从分类文献中观察到,嵌入隐式或显式最大化预测熵的损失函数可产生最先进的校准性能。尽管有这些发现,但这些损失在校准医学图像分割网络的相关任务中的影响仍未得到探索。在这项工作中,我们提供了当前最先进的校准损失的统一约束优化视角。具体来说,这些损失可以看作是线性惩罚(或拉格朗日项)的近似值,对 logit 距离施加了等式约束。这指出了这种底层等式约束的一个重要限制,其随后的梯度不断推向无信息解决方案,这可能会阻止在基于梯度的优化过程中在判别性能和模型校准之间达到最佳折衷。根据我们的观察,我们提出了一种基于不等式约束的简单而灵活的泛化方法,它对 logit 距离施加了一个可控的边际。在各种公共医学图像分割基准上进行的全面实验表明,我们的方法在网络校准方面为这些任务设定了新的最先进的结果,同时判别性能也得到了改善。代码可在 https://github.com/Bala93/MarginLoss 获得

使用基于边距的标签平滑校准分割网络

使用基于边距的标签平滑校准分割网络PDF文件第1页

使用基于边距的标签平滑校准分割网络PDF文件第2页

使用基于边距的标签平滑校准分割网络PDF文件第3页

使用基于边距的标签平滑校准分割网络PDF文件第4页

使用基于边距的标签平滑校准分割网络PDF文件第5页

相关文件推荐

2015 年
¥1.0
2024 年
¥2.0