量子计算机有可能打破加密方案,例如Rivest -Shamir -adleman(RSA)和椭圆曲线密码学(ECC);这些用于emv®卡支付系统,用于离线身份验证到付款终端,从终端到卡到卡的离线PIN加密以及安全的频道通信。考虑到这一点,并假设将来可以使用量子计算机,则本文档讨论了卡支付系统的特定风险量子计算姿势,并介绍了Quantum Cryptography(PQC)(PQC) - 数学,量子物理学和计算机科学的交集的新领域。它还提供了一些时间轴预测,以及有关从RSA到ECC再到PQC的迁移路径的建议,以供离线支付。2。使用经典加密来保护卡付款:概述
在1984年,Shamir [27]要求采用公共密钥加密方案,其中公钥可以是任意的字符串。In such a scheme there are four algorithms: (1) setup generates global system parameters and a master-key , (2) extract uses the master-key to generate the private key corresponding to an arbitrary public key string ID ∈{ 0 , 1 } ∗ , (3) encrypt encrypts messages using the public key ID , and (4) decrypt decrypts messages using the corresponding private key.Shamir基于身份的加密的最初动机是简化电子邮件系统中的认证管理。当爱丽丝通过bob@hotmail.com向鲍勃发送邮件时,她只是使用公共钥匙字符串“ bob@hotmail.com”对她的消息进行加密。爱丽丝无需获得鲍勃的公钥限制。当鲍勃收到加密的邮件时,他会联系第三方,我们将其称为私钥生成器(PKG)。鲍勃以同样的方式将自己身份验证到PKG上,他将自己身份验证到CA并从PKG中获得了私钥。鲍勃可以阅读他的电子邮件。请注意,与现有的安全电子邮件基础架构不同,即使鲍勃尚未设置其公共密钥证书,爱丽丝也可以向鲍勃发送加密邮件。还要注意,密钥托管是基于身份的电子邮件系统固有的:PKG知道鲍勃的私钥。我们在下一节中讨论了关键撤销以及IBE计划的几个新应用程序。自1984年提出了该问题以来,已经提出了有关IBE计划的几个建议(例如[7,29,28,21])。但是,这些都不是完全令人满意的。某些解决方案要求用户不勾结。其他解决方案要求PKG为每个私钥生成请求花费很长时间。一些解决方案
首字母缩写术语 Electromagnetic Interference FCC Federal Communications Commission FIPS Federal Information Processing Standard GPC General Purpose Computer GUI Graphical User Interface HMAC (Keyed-) Hash Message Authentication Code KAT Known Answer Test MAC Message Authentication Code MD Message Digest NIST National Institute of Standards and Technology OS Operating System PKCS Public-Key Cryptography Standards PRNG Pseudo Random Number Generator PSS Probabilistic Signature Scheme RNG Random Number Generator RSA Rivest,Shamir和Adleman Sha安全哈希算法SSL安全套接字层Triple-DES TRIPLIPLE-DES三数据加密算法TLS传输层安全USB通用串行总线
基于身份的加密(IBE)是公共密钥加密的概括,其中公钥可以是任意字符串,例如名称,电话数字或电子邮件地址。用户的秘密密钥只能由可信赖的机构(称为密钥生成中心(KGC))生成,该键将其主秘密密钥应用于用户自身身份验证后用户的身份。Shamir [34]提出了IBE的概念,以简化公共密钥和证书管理。自Boneh和Franklin [10]提出的首次意识到,在过去的二十年中,进行了重大研究[1、7、7、8、12、17、18、21、22、25、36、37],从不同假设中构建了各种IBE方案。最近,为了预言量子计算机的攻击,量词后加密术,尤其是基于晶格的密码学,成为流行的研究方向。在此过程中,我们专注于基于晶格的ibe。
“视频理解是人工智能的一个领域,让我着迷,尤其是与动画相关的领域。这个领域提出了许多独特的挑战,这就是为什么我决定在 Efi Arazi 计算机科学学院前院长 Ariel Shamir 教授的指导下,在博士后研究中追求我的热情。动画提出了许多挑战,因为角色的外观和形状变化比照片写实(非动画)电影更大。通过跟踪整个视频中的角色,我们能够学习一种按身份对他们进行分组的表示,即使他们改变了服装、姿势甚至形状。这种能力具有深远的可能性。例如,它可以帮助分析视频的演员阵容,监控动画中的性别偏见,或检索视频精彩片段。我很高兴地通知大家,我的研究论文最近被欧洲计算机图形学协会 (Eurographics) 接受了。”
印度隐藏在加密图像(RDHEI)中的摘要可逆数据是一种将秘密信息嵌入加密图像中的技术。它允许提取秘密信息和无损解密以及原始图像的重建。本文提出了一种基于Shamir的秘密共享技术和多项目构建技术的RDHEI技术。我们的方法是让图像所有者通过对像素并构造多项式来隐藏多项式的系数中的像素值。然后,我们通过Shamir的秘密共享技术将秘密钥匙替换为多项式。它使Galois字段计算能够生成共享像素。最后,我们将共享像素分为8位,然后将它们分配给共享图像的像素。因此,嵌入式空间被腾空,生成的共享图像隐藏在秘密消息中。实验结果表明,我们的方法具有多个隐藏机制,并且每个共享图像具有固定的嵌入率,随着更多图像的共享,该机制不会降低。此外,与先前的方法相比,嵌入率得到提高。简介多媒体安全技术用于防止未经授权的用户复制,共享和修改媒体内容。为了防止此问题,加密和信息隐藏通常用于保护媒体内容。就信息隐藏技术而言,传统信息隐藏技术将破坏封面图像的内容。因此,这些图像是否可以完全恢复非常重要。但是,在某些例外情况下,例如军事,医疗和法律文档图像,图像的轻微失真是完全无法接受的。可逆数据隐藏方案(RDH)可以与无损的要求相对应。RDH方法应用了更改上下文的方法,以在封面媒体中隐藏秘密数据。数据提取后,不断变化的上下文将被充分回收到封面媒体。另一方面,RDHEI(隐藏在加密图像中的可逆数据)技术可以将加密技术与RDH技术相结合,RDH技术不仅可以在图像中隐藏秘密信息,而且还可以加密图像以保护图像内容。Visual密码学是一种加密技术,允许视觉信息(图片,文本等)要加密的方式使解密成为不需要计算机的机械操作。
安全的多方量子计算是一种牢固且分布的技术(即聚合,乘法,比较和排序)的一种技术。凝聚是安全多方量子计算的基本算术操作之一。安全的多方量子汇总包含一组秘密和一组玩家。这些秘密与总体球员共享,并且球员的门槛数量共同执行聚合,而无需透露其秘密。现有的汇总协议是(n,n)阈值方法,其中n代表参与者的总数。如果一个播放器不诚实,则聚合协议不能齐路。在本文中,我们提出了基于阈值的A(t,n)基于阈值的汇总协议,其中t代表播放器的阈值数量。该协议使用Shamir的秘密共享,量子状态,SUM GATE,量子傅里叶变换,盲矩阵和Pauli操作员来效率且安全地汇总秘密。所提出的协议可用于构建复杂的电路[1,2,3,4,5,6,7,8,9,9,10,11,12],例如电子投票和电子拍卖。
近年来,所使用的数字设备数量已大大增长。这对信息系统构成了巨大的安全威胁。加密技术用于使未经授权的用户无法理解敏感信息[5]。一种生成通信签名的重要技术是秘密共享[7]。秘密共享是一种技术,它允许在一组参与者中分发秘密,以便某些参与者可以共同努力以重建秘密。参与者组成的其他小组不应能够确定全部秘密。阈值方案是秘密共享方案的一种特殊形式,其中至少一组特定数量的参与者(称为阈值)都可以恢复秘密。但是,任何参与者少的小组都无法获得有关该秘密的任何信息[5]。Shamir [17]和Blakley [1]在1979年独立引入了秘密共享方案。从那以后,已经提出了许多方案。这些秘密共享方案中的一些基于编码理论。编码理论是对误差校正代码的性质的研究,已成为数学成熟的分支,已有五十多年了。但是,在密码学中应用编码理论的研究较少探索[11]。McEliece和Sarwate是第一个注意到1981年代码与秘密共享之间关系的人[12]。第2章主要侧重于引入了解编码理论和秘密共享基础所需的核心概念。本论文旨在介绍从代码中构建秘密共享方案的概念,而无需假设有关编码理论或秘密共享的任何先验知识。在后来的几年中,随后的代码构建秘密共享方案的更多方法。我们将考虑Brickell [2]在第3.1节中引入的施工。Massey [10]基于最小代码的另一种结构将在第3.3节中讨论。这些结构的一个重要方面是检查可以确定秘密的参与者集,称为访问结构。通常,很难明确表达这些访问结构以及构建具有所需访问结构的构造秘密共享方案。在第3章中介绍不同的构造时,将介绍此主题。正如McEliece和Sarwate在1981年所做的那样,我们将更好地研究一类称为Reed-Solomon代码和秘密共享方案的特定代码之间的关系。REED-SOLOMON代码将在第4章中介绍。在同一章中,我们将涵盖Shamir引入的构造与使用Massey开发的构造中的Reed-Solomon代码之间的等效性。
HMAC Hashed Message Authentication Code HTTPS Hypertext Transfer Protocol Secure ICMP Internet Control Message Protocol IKE Internet Key Exchange IP Internet Protocol IPv4 Internet Protocol version 4 IPv6 Internet Protocol version 6 IPsec Internet Protocol Security MP Management Plane NAT Network Address Translation NIST National Institute of Standards and Technology PP Protection Profile REST Representational State Transfer RSA Rivest, Shamir and Adleman (algorithm for public-key cryptography) SA Security Association SAR Security Assurance Requirement SFR Security Functional Requirement SHA Secure Hash Algorithm SSH Secure Shell SSL Secure Socket Layer ST Security Target TLS Transport Layer Security TOE Target of Evaluation TSF TOE Security Functions UDP User Datagram Protocol URL Uniform Resource Locator VLAN Virtual Local Area Network VM Virtual Machine VPN Virtual Private Network VPNGW Virtual Private Network Gateway
AES 高级加密标准 BR 基本要求 CA 证书颁发机构 CAA 证书颁发机构授权 CABF CA/浏览器论坛 CDN 内容交付网络 CRL 证书撤销列表 CPS 认证惯例声明 CT 证书透明度 DES 数据加密标准 DH Diffie-Hellman DNS 域名服务 DV 域验证 ECC 椭圆曲线密码术 EE 终端实体 EV 扩展验证 FQDN 完全限定域名 GDPR 通用数据保护条例 HPKP HTTP 公钥固定 HSTS HTTP 严格传输安全 HTTP 超文本传输协议 HTTPS HTTP 安全 ICA 中间 CA ICANN 互联网名称与数字分配机构 OCSP 在线证书状态协议 O/S 操作系统 OV 组织验证 PKI 公钥基础设施 RSA Rivest Shamir Adleman SAN 主体备用名称 SHA 安全哈希算法 SNI 服务器名称指示 SSL 安全套接字层 TLS 传输层安全