摘要 简介。本文报道了一个关于在互联网上销售的抗晕动病透皮贴剂的案例研究,该贴剂声称仅含有天然成分,但实际上含有未申报的药用活性物质。对样品的目视检查发现,二次包装和一次包装存在许多不一致之处,缺少各种法律信息,并且“CE”标志不符合要求。方法。采用液相色谱-高分辨率质谱法进行定性分析,采用二极管阵列检测器液相色谱法进行定量分析。结果。分析证明存在抗组胺药苯海拉明和其他活性物质(辣椒素,一种透皮吸收促进剂,以及痕量的双氯芬酸,可能是来自同一植物的其他产品的污染物)。此外,通过 ICP-MS 分析评估了几种微量元素的存在,包括对人体有潜在毒性的元素。结论。该案例是文献中从未报道过的“伪装药物”新案例,表明存在对公共健康的切实风险。
通过碱基编辑在人类β珠蛋白基因 ( HBB ) 中引入天然存在的 Hb G-Makassar 变异,以消除聚合镰状蛋白 HbS(镰状细胞性贫血的主要分子驱动因素),这代表了治疗这种疾病患者的潜在新模式。虽然临床上正在推进几种用于治疗镰状细胞性贫血的体外基因编辑技术,但这种具有潜在变革性的细胞疗法仍然存在一些挑战,即在自体造血干细胞移植 (HSCT) 之前必须进行基因毒性骨髓清除性预处理。为了解决这个问题,我们开发了一种策略,即将一种与 CD117 结合的单克隆抗体 (mAb) 与多重工程化 HSC (eHSC) 结合,CD117 是 HSPC 上对生存至关重要的关键受体。我们的 eHSC 旨在逃避 mAb 结合并携带 Makassar 治疗性编辑。我们的工程干细胞抗体配对逃避(ESCAPE)策略旨在为当前的预处理方案提供一种非基因毒性的替代方案。
Paolo Proietti(Leonardo SpA,意大利);Jonathan Allsop(皇家空军中央飞行学校,英国);Marten Bloch(Fraunhofer FKIE,德国);Jelte E. Bos(TNO,荷兰);Pietro Cipresso(Instituto Auxologico Italiano,意大利);Dave Clement(空军研究实验室,美国);Jon French(安柏瑞德航空大学,美国);Frank Jaspers(武器与弹药技术中心,德国);Ramy Kirollos(DRDC – 多伦多研究中心,加拿大);Victoria Malyusz(武器与弹药技术中心,德国);Mayowa Olonilua(国防科学与技术实验室,英国);Peder Sjölund(Skydome AB,瑞典)北约科学技术办公室 (STO) STO-TR-HFM-MSG-323 Pp。 1 – 194 外部发布者发布日期:2021 年 10 月 发布条款:本文件已获准公开发布。根据 DND 安全标准,本 CAN UNCLASSIFIED 文件的正文不包含所需的安全横幅。但是,必须将其视为 CAN UNCLASSIFIED,并根据封面上指定的条款和条件进行适当保护。
Cas9 切割的位置由与 Cas 蛋白结合的短 RNA 分子(称为向导 RNA)决定(图 5)。向导 RNA 与 Cas9 结合后,复合物扫描基因组以查找称为 PAM 的三碱基序列。Cas9 PAM 序列为 5' NGG 3',其中 N 可以是任何碱基。当 Cas9 遇到 PAM 序列时,它会解开 DNA,将其分离成单链。然后,Cas9 使用向导 RNA 来确定是否切割 DNA。向导 RNA 的一端有约 20 个碱基,它们决定了 Cas9 将切割哪个 DNA 序列。如果向导 RNA 中这约 20 个碱基的序列与 DNA 互补,则 Cas9 将切割 DNA 的两条链。如果向导 RNA 与 DNA 不匹配,则复合物将移动到下一个 PAM 位点,双螺旋将重新拉上拉链,形成双链形式。使用 Cas9 作为基因编辑工具的诀窍是,科学家可以定制这个约 20 个碱基的序列,将 Cas9 定位到 DNA 的特定区域,基本上允许他们对 Cas9 的切割位置进行编程。
本文讨论了名为“具身音乐机器人”的表演机器人项目(2018 年至今)中的创造性和技术方法。该项目的核心方法是以人为本的人工智能 (HC-AI),它专注于设计、开发和部署以“深刻而有意义的方式”实时与人类合作的智能系统。1 该项目将这一目标作为一种核心哲学,创造性人工智能和体验式学习的概念就是从中发展而来的。本次讨论的核心是从机器人和人类共享体验的流程中阐明创造性人工智能和新的 HC-AI 计算学习形式的构成思维转变。中心案例研究 (EMRv1) 调查了人工智能驱动的机器人与即兴演奏的人类音乐家(作者)实时共同创作的技术解决方案和艺术潜力。该项目正在进行中,目前处于 v4,结论有限;除此之外,可以感觉到这种方法是合作的,但需要进一步研究。
年龄 19-39 13.0(参考值) 40+ 16.6 .169 5.18 .0001 性别 男性 15.4(参考值) 女性 14.2 -.056 -1.73 .0840 种族/民族 白种人 16.6(参考值) 黑人 13.7 -.063 -1.70 .0899 西班牙裔 16.7 .005 0.11 .9127 亚裔/PI 17.0 .013 0.30 .7611 其他 15.5 .046 -1.00 .3185 疫苗接种剂量 未接种疫苗 18.0(参考值) 部分接种疫苗 15.5 -.077 -2.37 .0181 完全接种疫苗 10.9 -.111 -3.40 .0007
基因疗法作为镰状细胞疾病(SCD)的潜在治疗,鉴于这种血红蛋白(HB)疾病是由单点突变引起的。基因组测序的进展增加了对HB调节的理解,并发现了造血干细胞基因组修饰的分子工具的发现,使SCD可能性造成了基因治疗。基因加成策略,以提高正常或抗分球蛋白的表达,作为改善SCD的策略。在临床翻译之前必须解决许多障碍,包括对基因修饰的舒适性干细胞进行综合,将转移基因的表达增加到特定水平,并以安全的方式调节患者,以使基因模型细胞的足够的足够的生物能够适应。发现精确的基因组编辑器
镰状细胞疾病(SCD)是最常见的严重单基因疾病,每年在全球范围内有300,000个出生。SCD是一种常染色体隐性疾病,是由-珠蛋白基因的第六个点突变(HBB)引起的。ex vivo -Globin基因校正在自体患者衍生的造血干细胞和祖细胞(HSPC)中可能有可能为SCD提供治疗性治疗。我们以前开发了一种CRISPR-CAS9基因靶向策略,该策略使用具有化学改良的指南RNA预处理的高保真性CAS9诱导重组腺相关病毒血清型6(RAAV6) - 介导的HBB基因校正HSPCS中的SCD引起的突变。在这里,我们证明了来自健康和SCD患者供体(GCHBB-SCD)的Plerixafor-Mobilized CD34 +细胞中HBB基因校正的临床前可行性和毒理学。我们在临床规模的GCHBB-SCD制造中最多可实现60%的HBB等位基因校正。移植到免疫缺陷型NSG小鼠中后,通过多核植入实现20%的基因校正。长期安全性,肿瘤性和毒理学研究表明,没有来自植入的GCHBB-SCD药物的造血,遗传毒性或肿瘤性异常的证据。一起,这些临床前数据支持该基因校正策略的安全性,功效和再现性,以启动SCD患者的1/2期临床试验。
其中cas9将切割的地方由称为指导RNA的短RNA分子确定,该指南RNA与CAS蛋白结合(图5)。引导RNA与Cas9结合后,该复合物将基因组扫描为一个称为PAM的三个碱基序列。cas9 pam序列为5'ngg 3',其中n可以是任何碱基。当Cas9遇到PAM序列时,它会解压缩DNA,将其分成单链。cas9使用引导RNA确定是否切割DNA。在引导RNA的一端是约20个碱基,确定将切割哪种DNA序列Cas9。如果引导RNA中的20个碱基序列与DNA互补,则CAS9将切割DNA的两个链。如果引导RNA与DNA不匹配,则该复合物将移至下一个PAM位点,并且双螺旋将重新拉链为双链形式。将Cas9用作基因编辑工具的诀窍是,科学家可以自定义这个〜20个基本序列,以将Cas9靶向DNA的特定区域,从而基本上允许它们编程CAS9可以切割的地方。