目标应用包括电容式电源、三相 UPS、智能计量和太阳能应用的微型逆变器。它们也适用于车载充电器等汽车应用。这些电容器采用符合 IEC 60286-2 标准的卷带包装。R53B 系列采用 X2 技术,该技术结合了 THB IIIB 级、微型尺寸、高电容值和低卤素含量。它们还符合气候等级 40/110/56、IEC 60068-1 的要求,通过 AEC-Q200 认证并符合 RoHS 标准。电容范围从 0.068 到 20μF,推荐直流电压为 ≤1000VDC,额定交流电压为 350VAC 50/60Hz 或额定直流电压为 800VDC。使用寿命在 -40 至 125°C 下为 1,000 小时。
“越小越软”是强度的逆尺寸依赖性,违背了“越小越强”的原则。它通常由表面介导的位移或扩散变形引起,主要存在于一些超小尺度(几十纳米以下)的金属材料中。在这里,利用离子束辐照的表面改性,我们在更大尺寸范围(< ∼ 500 纳米)的共价键、硬而脆的材料非晶硅(a-Si)中实现了“越小越软”。它表现为从准脆性破坏到均匀塑性变形的转变,以及在亚微米级范围内随着样品体积的减小而屈服应力的降低。提出了一个硬核/超塑性壳的分析模型来解释人为可控的尺寸相关软化。这种通过离子辐照的表面工程途径不仅对于调整小尺寸非晶硅或其他共价结合非晶态固体的强度和变形行为特别有用,而且对于非晶硅在微电子和微机电系统中的实用性也具有实际意义。© 2023 由 Elsevier Ltd 代表《材料科学与技术杂志》编辑部出版。
EPC9147B 是一款接口板,可接受 TI LAUNCHXL 开发套件(例如 F28379D 或 F28069M,该套件具有 TI C2000 微控制器),并连接到兼容的三相 eGaN® FET/IC 电机驱动逆变器板,如右图所示。该接口板允许用户利用现有的 TI InstaSPIN_UNIVERSAL GUI 资源以及 EPC 专用文件来编程控制器板,并使用无传感器磁场定向控制和空间矢量脉冲宽度调制来控制由 eGaN FET/IC 三相逆变器供电的电机。
违反摩尔法律计算绩效的限制正在努力跟上不懈的驱动力,以实现高性能芯片,因为性能瓶颈已经出现了,扩展范围在所有方面都达到了极限。扩展摩尔定律的一种方法是通过异质整合,这可以随着性能水平的提高铺平到未来设备的道路。随着芯片的变小,越来越强大,连接不断增长的晶体管数量的电线变得越来越薄且包装更密集。产生的阻力增加和过热会导致信号延迟,并限制中央处理单元(CPU)时钟速度。其他问题包括大规模集成电路(LSI)操作中的频率限制,与电池相关的电源限制和冷却问题。在改善移动计算和图形处理系统中的性能时,一个考虑因素是确保工作频率和功耗均未增加。另一个考虑因素是,通过功耗效率改善内存访问带宽,因此必须具有广泛的输入/输出(I/O)内存总线而不是高频接口。此外,随着系统性能的改善,此类系统中的内存能力变得越来越重要。3D芯片技术有助于解决几个问题,这些问题挑战了芯片的性能提高和加工尺寸的减少。这种方法通过称为晶圆键的过程在另一个芯片或集成电路(IC)上层。TSV还可以实现更有效的散热并提高功率效率。与此使用透过的硅VIA(TSV)制造方法垂直堆叠多个芯片组件,从而产生更快,更小和更低的CPU。
机器人运动控制成功的机器人运动控制成功基本上需要相互构图。例如,用于人形机器人的电机控制系统需要为您的机器人设计选择最佳的功率和尺寸配置。在机器人中,电动机控制驱动器连接到机器人电池,并包括电流,电压传感和编码器接口。人形机器人尤其与更高的自由度和更快的响应时间变得更加复杂,以更好地模仿人类运动(图2)。人形机器人的运动必须接收运动位置数据以定义路径计划。需要各种转子位置传感器,具体取决于电动机所需的精度。Texas Instruments提供了模拟和过程来启用编码器接口系统。一些最常见的编码器是:•光学编码器•磁编码器•增量编码器•正弦(SIN/COS)解析器(解析器是模拟的电气变压器,测量角姿势和速度)
本基金将投资于全球范围内多元化公司的可转让股票及股票相关证券,这些证券的购买市值通常不超过50亿美元,或不超过MSCI ACWI小型股指数中最大公司的市值。这些证券主要为普通股及其他具有股票特征的证券,包括但不限于优先股、认股权证(仅在现有持股可发行认股权证的情况下持有,且合计通常不超过本基金净资产值的5%)和权利(由公司发行,允许持有人认购该公司发行的额外证券),以及此类证券的存托凭证(例如ADR和GDR)。所有这些证券均在招股说明书附录E所列的证券交易所或受监管市场交易。有时,在存在阻碍直接持有股票的当地限制的市场中,副投资经理可以代表本基金通过购买参与票据间接获取这些股票。任何投资于中国的投资均应通过香港上市的H股及其他可获得的存托凭证进行。本基金不会寻求通过使用上述任何工具以任何方式进行杠杆投资。
摘要。扩散模型在高质量产生中表现出色,但由于迭代采样而导致缓慢的推断。尽管最近的方法已成功地将扩散模型转换为单步生成器,但它们忽略了模型尺寸的减小,从而将其适用性限制在计算受约束的情况下。本文旨在通过探索推理步骤和模型大小的关节压缩来开发基于强大的整流流框架的小型,有效的一步扩散模型。使用两种操作,回流和蒸馏,整流的流框架训练一步生成模型。与原始框架相比,挤压型号的大小带来了两个新的挑战:(1)在回流过程中,大型老师和小学生之间的初始化不匹配; (2)小型学生模型上天真蒸馏的表现不佳。为了克服这些问题,我们提出了退火回退和流引导的蒸馏,这共同构成了我们的Slimflow框架。使用新颖的框架,我们训练一个一步扩散模型,其FID为5.02和1570万参数,在CIFAR10上表现优于先前最新的一步扩散模型(FID = 6.47,1940万参数)。在Imagenet 64×64和FFHQ 64×64上,我们的方法产生了与较大模型相当的小型单步扩散模型,从而展示了我们方法在创建紧凑,有效的一步扩散模型时的效率。
电池必须为微处理器(MCU),无线电和电荷之间的传感器供电。要使电池寿命最大化,您需要专注于可以在操作时消耗低功率的组件,以及关闭时消耗非常低的功率。降压转换器是低IQ操作的最重要功能,因为它是MCU的电源,并且必须始终运行。考虑实施集成非常低电流直流/直流转换器(例如BQ25120A)的产品。此产品可启用700 NA IQ,而1.8 V导轨正在打开并以无负载为MCU供电。如果您的可穿戴设备需要额外的低智商,则TPS62743或TPS62843是一个不错的选择。TPS62843是新一代的超低IQ倒数转换器。具有典型的操作静止电流275-Na,该设备在灯光载荷时将高效率延伸至100μA及以下。它针对1UH电感器进行了优化,并降至4.7 UF COUT。带有微小的6针WCSP软件包(0.8 mm x 1.05 mm)和小的被动组件,它支持总溶液尺寸降至5.7mm²。宽输出电压范围(0.4 V - 3.6 V)和600 mA输出电流使该设备适合大多数电池供电的应用,例如可穿戴电子,耳塞,TWS,TWS,医疗传感器,助听器和IoT。
通过涵盖功能和技术考虑因素,系统设计提供了如何实现系统的整体视图。它深入到系统的体系结构,数据结构,算法和接口。这种深入的探索使开发人员可以掌握所涉及的复杂性,并在整个开发过程中做出明智的决定。系统设计的一个关键优势是它优化资源分配的能力。有了清晰的路线图,开发人员可以优先考虑任务并战略分配资源。此优先级确保关注关键组成部分和功能,从而导致更有效,更简化的发展过程。本质上,系统设计是开发过程中不可替代的一步。它提供了全面的路线图,促进了有效的资源管理,并促进了从概念到创建的平稳过渡。此外,系统设计标志着概念转化为现实的关键点。它弥合了构想与实施之间的差距,提供了指导开发人员的切实计划。此阶段使他们能够做出明智的决定,预测潜在的挑战并积极开发解决方案。