2025使用结构化矩阵自定义了软磁性注意的电感偏差。Yilun Kuang,Noah Amsel,Sanae Lotfi,Shikai Qiu,Andres Potapczynski,Andrew Gordon Wilson。审查2024年,贝叶斯对抗体的优化是由不断发展的序列生成模型所告知的。Alan Nawzad Amin,Nate Gruver ∗,Yilun Kuang ∗(同等贡献),Yucen Lily Li ∗,Hunter Elliott,Aniruddh Raghu,Calvin McCarter,Peyton Greenside Greenside,Andrew Gordon Wilson。国际学习表征会议(ICLR),2025年,Spotlight 2024解锁令牌作为较大语言模型的泛化界限的数据点。sanae Lotfi ∗,Yilun Kuang ∗(同等贡献),Brandon Amos,Micah Goldblum,Marc Finzi,Andrew Gordon Wilson。神经信息处理系统(Neurips),2024年,Spotlight 2023大型语言模型的非呈现概括范围。sanae Lotfi ∗,Marc Finzi ∗,Yilun Kuang ∗(同等贡献),Tim G. J. Rudner,Micah Goldblum,Andrew Gordon Wilson。国际机器学习会议(ICML),2024 2023具有最大多种能力表示的自然图像的学习有效编码。Thomas Yerxa,Yilun Kuang,Eero Simoncelli,Sueyeon Chung。神经信息处理系统(神经),2023年研讨会论文
对环境的不完整知识导致代理在不确定性下做出决定。强化学习(RL)的主要困境之一,即自主代理在做出决策时必须平衡两个对比需求的是:利用当前对环境的知识以最大程度地提高累积奖励,并探索允许环境知识的行动,希望提高环境的知识,希望带来更高的奖励价值(探索奖励价值(Exploritation-explotitation-explotitation-explopolitation-opploplotiting-offriatition-offlotiting-trifcount)。同时,另一个相关问题指的是各州的全部观察性,这在所有申请中都可能不假定。例如,当2D图像被视为用于在3D模拟环境中找到最佳动作的RL方法中的输入时。在这项工作中,我们通过部署和测试几种技术来解决这些问题,以平衡探索和剥削的权衡,以在自主驾驶场景中预测转向车轮的部分可观察到的系统。更确切地说,最终的目的是研究使用自适应和确定性探索策略以及深层复发Q-NETWORK的影响。此外,我们改编并评估了修改后的二次损失函数的影响,以改善基础卷积复发性神经网络的学习阶段。我们表明,自适应方法可以更好地近似探索和剥削之间的权衡,而且通常,SoftMax和Max-Boltzmann策略的表现优于绿化技术。
摘要:目标:脑电图(EEG)信号的时间和空间信息对于识别情绪分类模型中的特征至关重要,但它过分依赖于手动特征提取。变压器模型具有执行自动特征提取的能力;但是,在与情绪相关的脑电图信号的分类中尚未完全探索其潜力。为了应对这些挑战,本研究提出了一个基于脑电图和卷积神经网络(TCNN)的新型模型,用于EEG时空 - 静态(EEG ST)特征学习以自动情感分类的特征。方法:所提出的EEG ST-TCNN模型利用了编码(PE)的位置(PE),并注意EEG信号中感知的通道位置和定时信息。模型中的两个平行变压器编码器用于从与情绪相关的EEG信号中提取空间和时间特征,并且使用CNN来汇总脑电图的空间和时间特征,随后使用SoftMax对其进行分类。结果:拟议的EEG ST-TCNN模型在种子数据集上的准确度分别为96.67%,精度为95.73%,96.95%和96.34%的精度,唤醒,唤醒,唤醒和价尺寸的精度为96.34%。结论:结果证明了所提出的ST-TCNN模型的有效性,与最近的相关研究相比,情绪分类的表现出色。意义:拟议的EEG ST-TCNN模型有可能用于基于EEG的自动情绪识别。
图 1 | BCI 数据的持续深度学习分类。在线 BCI 任务期间记录的 EEG 数据滑动窗口用于训练 Schirrmeister 等人(2017 年)报告的浅层 CovNet 架构。这些窗口长 500 毫秒,每 40 毫秒移动一次。根据提供的数据训练了两种类型的模型。“运动模型”使用与在线 BCI 实验相同的运动皮层电极蒙太奇进行训练。“所有模型”均使用所有可用电极进行训练。在连续步骤中,浅层 CovNet 架构使用密集层和 softmax 变换执行时间卷积、空间滤波、平方非线性、均值池化、对数变换和线性分类。在测试期间,训练后的模型为每个窗口提供类成员的估计概率。在模拟光标控制环境中,具有最高估计概率的类(红色圆圈)用于将虚拟光标移动到该最高估计概率的方向,并与该最高估计概率成比例。通过改变试验分类所需的总概率阈值(神经网络输出随时间的总和),探索了神经网络预测和控制系统之间的功能映射。低概率阈值模拟更快的光标控制,而高阈值模拟更慢的光标控制(有关更多详细信息,请参阅文本)。
工程学院,穆罕默迪亚大学马朗,马朗,印度尼西亚B工程学院,加德贾·马达大学,Yogyakarta,印度尼西亚Yogyakarta,计算机和数学科学学院共振成像(MRI)是一种身体感测技术,可以产生器官和组织状况的详细图像。 与脑肿瘤特别相关,可以使用图像检测技术分析所得的图像,以便可以自动对肿瘤阶段进行分类。 检测脑肿瘤需要高度的准确性,因为它与医疗行动和患者安全的有效性有关。 到目前为止,卷积神经网络(CNN)或其与GA的组合取得了良好的结果。 因此,在这项研究中,我们使用了类似的方法,但具有VGG-16体系结构的变体。 VGG-16变体通过修改辍学层(使用SoftMax激活)来减少过度拟合并避免使用大量超参数来增加16层。 我们还尝试使用增强技术来预测数据限制。 使用数据进行癌症成像存档(TCIA)的实验 - 分子脑肿瘤数据(Rembrandt)的存储库包含130例具有不同疾病,成绩,种族和年龄为520张图像的患者的MRI图像。 肿瘤类型为Gliom A,图像分别分为II,III和IV级,分别为226、101和193图像。 用于培训和测试目的的数据将数据划分为68%和32%。 2022。工程学院,穆罕默迪亚大学马朗,马朗,印度尼西亚B工程学院,加德贾·马达大学,Yogyakarta,印度尼西亚Yogyakarta,计算机和数学科学学院共振成像(MRI)是一种身体感测技术,可以产生器官和组织状况的详细图像。 与脑肿瘤特别相关,可以使用图像检测技术分析所得的图像,以便可以自动对肿瘤阶段进行分类。 检测脑肿瘤需要高度的准确性,因为它与医疗行动和患者安全的有效性有关。 到目前为止,卷积神经网络(CNN)或其与GA的组合取得了良好的结果。 因此,在这项研究中,我们使用了类似的方法,但具有VGG-16体系结构的变体。 VGG-16变体通过修改辍学层(使用SoftMax激活)来减少过度拟合并避免使用大量超参数来增加16层。 我们还尝试使用增强技术来预测数据限制。 使用数据进行癌症成像存档(TCIA)的实验 - 分子脑肿瘤数据(Rembrandt)的存储库包含130例具有不同疾病,成绩,种族和年龄为520张图像的患者的MRI图像。 肿瘤类型为Gliom A,图像分别分为II,III和IV级,分别为226、101和193图像。 用于培训和测试目的的数据将数据划分为68%和32%。 2022。工程学院,穆罕默迪亚大学马朗,马朗,印度尼西亚B工程学院,加德贾·马达大学,Yogyakarta,印度尼西亚Yogyakarta,计算机和数学科学学院共振成像(MRI)是一种身体感测技术,可以产生器官和组织状况的详细图像。与脑肿瘤特别相关,可以使用图像检测技术分析所得的图像,以便可以自动对肿瘤阶段进行分类。检测脑肿瘤需要高度的准确性,因为它与医疗行动和患者安全的有效性有关。到目前为止,卷积神经网络(CNN)或其与GA的组合取得了良好的结果。因此,在这项研究中,我们使用了类似的方法,但具有VGG-16体系结构的变体。VGG-16变体通过修改辍学层(使用SoftMax激活)来减少过度拟合并避免使用大量超参数来增加16层。我们还尝试使用增强技术来预测数据限制。使用数据进行癌症成像存档(TCIA)的实验 - 分子脑肿瘤数据(Rembrandt)的存储库包含130例具有不同疾病,成绩,种族和年龄为520张图像的患者的MRI图像。肿瘤类型为Gliom A,图像分别分为II,III和IV级,分别为226、101和193图像。用于培训和测试目的的数据将数据划分为68%和32%。2022。我们发现VGG-16对脑肿瘤图像分类更有效,精度高达100%。关键字 - 分类; MRI;脑肿瘤;神经胶质瘤,CNN; VGG-16。手稿于2022年1月11日收到; 3月23日修订2022; 4月19日接受出版日期,2022年9月30日。国际信息学可视化杂志均在创意共享归因 - 归属共享下的许可。
在当今时代,通过查看大量磁共振成像 (MRI) 图像来亲自发现脑肿瘤是一个既极其耗时又容易出错的过程。它可能会阻止患者接受适当的医疗治疗。同样,由于涉及大量图像数据集,完成这项工作可能需要大量时间。由于正常组织和构成脑肿瘤的细胞之间存在惊人的视觉相似性,因此分割肿瘤区域的过程可能是一项艰巨的任务。因此,拥有一个极其准确的自动肿瘤检测系统是绝对必要的。在本文中,我们使用卷积神经网络 (CNN)、经典分类器和深度学习 (DL) 实现了一个在 2D MRI 扫描中自动检测和分割脑肿瘤的系统。为了充分训练算法,我们收集了大量具有各种肿瘤大小、位置、形式和图像强度的 MRI 图片。这项研究已使用支持向量机 (SVM) 分类器和几种不同的激活方法(softmax、RMSProp、sigmoid)进行了双重检查。由于“Python”是一种快速高效的编程语言,我们使用“TensorFlow”和“Keras”来开发我们提出的解决方案。在我们的工作过程中,CNN 能够达到 99.83% 的准确率,这优于迄今为止取得的结果。我们基于 CNN 的模型将帮助医疗专业人员在 MRI 扫描中准确检测脑肿瘤,这将显著提高患者的治疗率。
癌症被认为是缩短患者平均寿命的最具侵略性和破坏性疾病之一。误诊脑肿瘤会导致虚假的医疗干预,从而减少了患者的生存机会。精确的脑肿瘤的早期医学诊断是开始治疗计划的重要点,以改善脑肿瘤患者的存活率。计算机辅助诊断系统为帮助医生做出准确的诊断提供了连续的成功,并在深度和机器学习领域取得了积极的进步。深卷积层与使用传统方法提取的区域提取了与感兴趣区域的强大区分特征。在这项研究中,通过结合深度学习和传统的机器学习技术来进行不同的实验,以进行脑肿瘤诊断。Alexnet和Resnet-18与脑肿瘤分类和诊断的支持矢量机(SVM)算法一起使用。使用平均滤波器技术增强了脑肿瘤磁共振成像(MRI)图像。然后,深入学习技术被应用于通过深卷积层提取强大而重要的深度特征。结合深度和机器学习技术的过程开始,其中使用深度学习技术(即Alexnet和Resnet-18)提取功能。然后使用SoftMax和SVM对这些功能进行分类。MRI数据集包含3,060张图像,分为四个类别,这是三个肿瘤,一个是正常的。所有系统都取得了卓越的结果。特别是Alexnet+SVM混合动力技术表现最佳,精度为95.10%,敏感性为95.25%,特异性为98.50%。
高光谱图像 (HSI) 分类旨在为每个像素分配一个唯一标签,以识别不同土地覆盖的类别。现有的 HSI 深度学习模型通常采用传统学习范式。作为新兴机器,量子计算机在嘈杂的中尺度量子 (NISQ) 时代受到限制。量子理论为设计深度学习模型提供了一种新的范式。受量子电路 (QC) 模型的启发,我们提出了一种受量子启发的光谱空间网络 (QSSN) 用于 HSI 特征提取。所提出的 QSSN 由相位预测模块 (PPM) 和受量子理论启发的类测量融合模块 (MFM) 组成,以动态融合光谱和空间信息。具体而言,QSSN 使用量子表示来表示 HSI 长方体,并使用 MFM 提取联合光谱空间特征。量子表示中使用了 HSI 长方体及其由 PPM 预测的相位。使用 QSSN 作为构建块,我们进一步提出了一种端到端的量子启发式光谱空间金字塔网络 (QSSPN),用于 HSI 特征提取和分类。在这个金字塔框架中,QSSPN 通过级联 QSSN 块逐步学习特征表示,并使用 softmax 分类器进行分类。这是首次尝试将量子理论引入 HSI 处理模型设计。在三个 HSI 数据集上进行了大量实验,以验证所提出的 QSSPN 框架相对于最新方法的优越性。
1) https://aws.amazon.com/jp/ 2) https://cloud.google.com/products/ai/ 3) https://www.ibm.com/watson/ 4) https://azure.microsoft.com/ja-jp/services/cognitive-services/ 5) https://trends.google.co.jp/trends/ 6) https://colab.research.google.com/ 7) http://jupyter.org/ 8) https://www.anaconda.com/ 9) http://archive.ics.uci.edu/ml/datasets/Iris 10) http://lib.stat.cmu.edu/datasets/boston 11) https://archive.ics.uci.edu/ml/datasets/wine+quality 12) http://yann.lecun.com/exdb/mnist/ 12) http://megaface.cs.washington.edu/ 14)ReLU(Ramp函数):激活函数之一。当输入值为0以下时,变为0,当大于1时,则按输入原样输出。 15)Softmax函数:将判断结果以百分比的形式输出到输出层的各个单元。一般取百分比最高者作为答案。 16)铃木隆宏,《工作的消失》,讲谈社,2017,第76页 17)新井纪子,《人工智能与不会读教科书的孩子》,东洋经济,2018年 18)小川宏,《中小学编程教育及其在地区的实践》,日本艺术设计协会期刊第77期,2018年,第50-51页 19)迈克尔·施密特、Hod Lipson,《从实验数据中提炼自由形式的自然法则》,2009年,《科学》第324卷 计算机从摆动的钟摆的运动中推导出运动定律。 20)大脑中的侏儒:脑外科医生彭菲尔德绘制的图表,显示了人类大脑皮层的运动区和体感区与身体各部位之间的对应关系。
摘要 刀具状态监测 (TCM) 对于确保产品质量和避免停机至关重要。机器学习已被证明对 TCM 至关重要。然而,现有的研究主要基于监督学习,这阻碍了它们在实际制造环境中的适用性,因为在役机器上的数据标记既麻烦又昂贵。此外,现有的无监督解决方案主要处理基于二元决策的 TCM,无法完全反映刀具磨损进展的动态。为了解决这些问题,我们提出了不同的无监督和半监督五类刀具磨损识别框架,分别处理完全未标记和部分标记的数据。底层方法包括拉普拉斯得分、稀疏自编码器 (SAE)、堆叠 SAE (SSAE)、自组织映射、Softmax、支持向量机和随机森林。对于半监督框架,我们考虑了标记数据仅影响特征学习、分类器构建或两者的设计。我们还研究了 SSAE 在监督层面的不同训练配置。我们将框架应用于两个铣刀运行至故障数据集,使用麦克风和加速度计记录。评估中考虑了不同百分比标记训练数据下的单传感器和多传感器数据。结果显示了哪种框架在哪种数据设置下可产生最佳预测性能,并强调了传感器融合和判别性特征表示在应对标签不可用和稀缺性方面的重要性,以及其他发现。两个完全未标记数据的数据集实现的最高宏 F1 分别达到 87.52% 和 75.80%,当只有 25% 的训练观测值被标记时,最高宏 F1 超过 90%。