自乳化药物输送系统(SEDDS)是由石油,表面活性剂和共同表面活性剂组成的基于脂质的药物输送系统。SEDD具有自发自发自发乳液(GIT)自发自发的能力,从而形成了一种加油的水中乳液,从而改善了药物的吸收[2]。尽管SEDD不被认为是新颖的,但近年来,越来越多地为治疗应用开发它而引起了人们的兴趣。SEDD的潜力增强了生物药物分类系统(BCS)II和IV药物的溶解速率,这促使人们对其发育的兴趣越来越大。SEDDS的脂质成分刺激乳糜微粒/脂蛋白,导致十二指肠的胶束溶解化,因此该药物被捕获到胶体胶束中,因此,该药物变得更溶,并且其吸收也得到了改善[3]。SEDDS稀释后形成的乳液的小球尺寸为与GIT相互作用的表面积很大,从而改善了吸收和减少药物吸收变异性[4]。
1. 验证废物不属于《联邦法规》第 40 章第 261 和 262 部分所规定的危险废物,符合《佐治亚州危险废物管理规则》。2. 验证废物的收集和取样符合 EPA SW-846 第 9 章“取样计划”。3. 证明实验室工作是由经认可的 NELAC/NELAP 实验室进行的。任何向 EPD 提交由商业分析实验室准备的数据的人都应规定该实验室是经过批准的。规定应包括:1. 实验室名称,2. 认证机构名称,3. 认证机构颁发的认证编号或标识符,4. 与提交数据相关的认证范围(例如空气、饮用水、非饮用水、固体/危险废物),5. 认证生效(或颁发)日期,6. 认证到期日期。
经轧制加工的奥氏体不锈钢因其优异的机械性能和腐蚀性能而在技术应用中广泛应用。本研究调查了冷轧条件和快速凝固条件下 316L 奥氏体不锈钢的冷却速度、微观结构和性能的影响。冷轧加工钢的微观结构由奥氏体和低百分比的 δ 铁素体组成。对于快速凝固条件,随着冷却速度的降低,微观结构从柱状和针状树枝状晶粒演变为等轴树枝状晶粒,由于冷却速度高,不存在 δ 铁素体。此外,两种途径的热分析表明,在合成空气中快速凝固后,氧化动力学较慢。冷轧条件下的显微硬度低于快速凝固条件下的显微硬度,因为凝固条件下的微观结构更细化。考虑到点蚀电位,快速凝固条件区域 RS1 中的样品表现出最高的耐腐蚀性。冷轧条件下的钝化电流密度为5.72x10 -5 A/cm 2 ,而快速凝固条件下,区域RS1和RS2分别为2.24x10 -5 A/cm 2 和3.72x10 -6 A/cm 2 ,区域RS3在宽电位范围内未出现钝化区。
经轧制加工的奥氏体不锈钢因其优异的机械性能和腐蚀性能而在技术应用中广泛应用。本研究调查了冷轧条件和快速凝固条件下 316L 奥氏体不锈钢的冷却速度、微观结构和性能的影响。冷轧加工钢的微观结构由奥氏体和低百分比的 δ 铁素体组成。对于快速凝固条件,随着冷却速度的降低,微观结构从柱状和针状树枝状晶粒演变为等轴树枝状晶粒,由于冷却速度高,不存在 δ 铁素体。此外,两种途径的热分析表明,在合成空气中快速凝固后,氧化动力学较慢。冷轧条件下的显微硬度低于快速凝固条件下的显微硬度,因为凝固条件下的微观结构更细化。考虑到点蚀电位,快速凝固条件区域 RS1 中的样品表现出最高的耐腐蚀性。冷轧条件下的钝化电流密度为5.72x10 -5 A/cm 2 ,而快速凝固条件下,区域RS1和RS2分别为2.24x10 -5 A/cm 2 和3.72x10 -6 A/cm 2 ,区域RS3在宽电位范围内未出现钝化区。
高能密度锂金属电池是首选的下一代电池系统,并用聚合物固态电解质代替易燃液体电解质是实现高安全性和高特异性设备的重要性。不幸的是,电极/电解质和Li树突生长之间的固体 - 固体接触较差的固有的棘手问题阻碍了其实际应用。The in-situ solidification has demonstrated a variety of advantages in the application of polymer electrolytes and artificial interphase, including the design of integrated polymer electrolytes and asymmetric polymer electrolytes to enhance the compatibility of solid–solid contact and compatibility between various electrolytes, and the construction of artificial interphase between the Li anode and cathode to suppress the formation of Li dendrites and to增强聚合物电解质的高压稳定性。本综述首先阐述了固态电池的原位固化历史,然后专注于固化电解质的合成方法。此外,总结了聚合物电解质的设计和人工之间的构建,原地固化技术的最新进展也得到了总结,并且强调了原位固化技术在增强安全性方面的重要性。最后,设想了前景,新兴挑战和实用固化的实际应用。
尽管 ISS 是一种有效且具有潜在经济效益的技术,但以温室气体 (GHG) 排放衡量,它也可能产生大量的碳足迹。例如,普通波特兰水泥 (PC),也称为 I 型 PC,是 ISS 中最常用的试剂之一,每生产一吨 PC 就会产生多达约 1,800 磅 (lbs) 的二氧化碳 (CO 2 )。典型的 PC 应用率为每立方码 (CY) ISS 处理土壤约 400 磅 PC,仅 PC 生产一项,就相当于每处理一个 CY 产生约 360 磅 CO 2 的温室气体排放率,或几乎与添加到温室气体排放中的改良剂质量相同。作为参考,按照这种典型的应用率,用 ISS 处理 10,000 CY 土壤将相当于 360 万磅。二氧化碳排放量,大约相当于约 200 户家庭一年的排放量,或 360 辆汽油驱动的乘用车一年的排放量。1
摘要:本研究对先进生物材料合金快速凝固Co-Cr-Mo-C合金的微观组织和腐蚀性能进行了研究。采用快速凝固铸造方法不仅使受快速凝固影响较大的ε -HCP相的形成量发生了显著变化,而且电化学行为和凝固组织也发生了显著变化。本研究利用OM、SEM、EDS、XRD和动态电位仪研究了快速凝固Co-Cr-Mo-C合金。将钴合金锭放入充满氩气的感应炉中熔化,然后浇铸到V型砂型铜模中,制备快速凝固样品,并在不同的冷却速度下测量其性能。微观组织检查表明合金的结构主要由柱状树枝状组织组成,碳化物分布在一次和二次树枝状臂内,快速凝固将获得更细的树枝状组织以及改进的碳化物分布。这种结构将改善合金的腐蚀行为,并在以林格氏溶液作为电解质进行测试时降低其腐蚀速率。关键词:生物材料;钴铬合金;快速凝固;髋关节和膝关节植入物;腐蚀。
金属增材制造(MAM)技术在制造与再制造行业中得到广泛应用,微观组织模拟逐渐凸显其重要性。传统的凝固微观组织模拟方法在MAM应用中都有其优缺点。本文建立了一种确定性凝固微观组织模型,即“侵入模型”,以避免传统方法的本质缺陷。该模型不模拟各个柱状晶粒的生长动力学或推导变量的场形式,而是关注相邻双晶之间的相互作用。在双晶系统中,晶界从热梯度方向的倾斜被理解为一个晶粒向另一个晶粒的瞬时侵入行为,而MAM形成过程中的竞争性晶粒生长行为则是双晶系统中所有侵入行为的总结。为了填补快速凝固理论的空白,利用人工神经网络(ANN)建立了快速定向凝固条件下各向异性生长效应的数据库。以采用线材送料定向能量沉积 (DED) 制备的具有完整树枝状柱状晶粒 (原始 β 晶粒) 的 Ti6Al4V 薄壁样品为基准,测试了新模拟模型的有效性。沿堆积方向重构的原始 β 晶粒的晶粒几何结构与模拟结果具有很好的一致性。在满足应用范围的情况下,该模型还可以应用于 MAM 的其他情况或与各种模型结合,以实现实时凝固晶体学特征预测。关键词:增材制造;微观结构;建模;凝固
在这项研究中,我们在特征纯化和逐渐反向传播过程中检查了通道特征与卷积内核之间的关联,重点是网络内的向前和向后传播。因此,我们提出了一种称为特征空间固化的称为密集的Channel压缩的方法。利用了该方法的中心概念,我们引入了两个用于主链和头部网络的创新模块:特征空间固化结构(DF)的密集通道压缩和不对称的多级压缩解耦头(ADH)。集成到Yolov5模型中时,这两个模块表现出了出色的性能,从而导致修改的模型称为Yolocs。在MSCOCO数据集,大型,中和小型Yolocs模型上评估的AP分别为50.1%,47.6%和42.5%。保持推理速度与