摘要:在本文中,我们介绍了一项有关聚合物衍生的氧气(SIOC) /石墨复合材料的研究,用于潜在用作高功率储能设备中的电极,例如锂离子电容器(LIC)。使用高功率超声辅助溶胶 - 凝胶合成进行了复合材料,然后进行热解。密集的超声处理增强了凝胶化和干燥过程,从而改善了前陶瓷混合物中石墨akes的均匀分布。使用X射线差异,29 si固态NMR和拉曼光谱法表明组件之间未发生反应,使用X射线差异,29 si固态NMR和拉曼光谱对SIOC /石墨复合材料进行了理化研究。与纯组分相比,SIOC /石墨复合材料记录的高电流率(1.86 A g -1)的能力(1.86 a g -1)显示出了增强的能力(高达63%)。此外,向SIOC矩阵添加石墨降低了划界势的值,这是LIC中阳极的理想特征。
抽象目的 - 本文旨在研究六角硼(HBN)纳米颗粒对极高压力(EP)特性的影响,当用作润滑油的添加剂时。设计/方法/方法 - 通过分散0.5卷的最佳组成来制备纳米油。SAE 15W-40柴油发动机油中70 nm HBN的百分比使用超声处理技术。根据ASTM标准,使用四球摩擦仪进行摩擦学测试。发现 - 发现纳米油具有减速在接触表面上的癫痫发作点,可以获得更高的EP。与纳米油润滑相比,在用SAE 15W-40柴油发动机油润滑的球轴承磨损表面上观察到更多的粘合剂磨损。独创性/价值 - 实验研究的结果表明,HBN作为提高润滑油负荷携带能力的添加剂的潜力。
图3。有效的转换可提供高库的产量,而不会放大。使用多种市售解决方案构建了无PCR WGS库:KAPA HyperPrep(超声控制),WatchMaker DNA库准备碎片,Kapa Exprus,Kapa Evoplus,Kapa Evoplus,Nebnext Ultra Ultra II FS DNA库Prep和Illumina DNA Prep。Na12878人类基因组DNA的300 ng(所有评估套件)或75 ng(仅钟表者)被用作输入。工作流程进行了优化,通过调整碎片和结合后清理参数来提供类似尺寸的最终库。(a)使用Novaseq 6000输出数据绘制插入大小分布。(b)最终无PCR库的产量,如qPCR所测量。制表剂解决方案提供适用于WGS的插入大小,而无需锯齿状图案,并且产量超过了其他准备,包括超声处理。
外泌体是一种直径为40~100nm、具有双层膜包裹的细胞外囊泡,作为天然载体具有免疫原性低、在血液中稳定性高、可将药物直达细胞等优点,能够在细胞间进行运输,有利于细胞间物质和信息的交换,通过装载外源性药物(如小分子药物、跨膜蛋白、核酸药物等)来改变受体细胞的功能状态。外泌体作为药物载体的关键是将外源性药物有效地装载到外泌体中,而这一任务对外泌体作为药物载体的功能化研究是一个挑战。目前,超声处理、电穿孔、转染、孵育、挤压、皂苷辅助装载、转基因、冻融循环、热冲击、pH梯度法、低渗透析等方法已被用于将这些药物装载到外泌体中。本综述旨在概述外泌体各种药物装载技术的优缺点。
根据 Illumina 无细胞 DNA 富集制备用户指南中的详细说明,从碎片化的 FFPE DNA 或 cfDNA 制备 Illumina 无细胞 DNA 富集制备文库。对于 FFPE DNA,超声处理后,将 45 μl 碎片 DNA(~40 ng)转移到 96 孔 PCR 板中以进行最终修复反应。对于 ctDNA 样本,将 20 ng DNA 输入文库制备中。对“浓缩索引文库”步骤进行了更改,按质量而不是体积进行汇集,以适应在本研究期间测试的单个文库制备中的 1 重、4 重和 12 重文库汇集。使用 Qubit dsDNA BR 检测(Thermo Fisher Scientific,目录号 Q32853)对文库进行量化。为了适应更大的体积,每个文库汇集了 250 ng,并对协议进行了一些修改。富集是使用定制的 79 基因探针面板进行的,如 Illumina 无细胞 DNA 富集准备用户指南中所述。
摘要:纳米囊化已成为药物输送,增强稳定性,生物利用度以及使受控的,有针对性物质递送到特定细胞或组织的最新进展。但是,传统的纳米颗粒交付面临诸如短期流通时间和免疫识别之类的挑战。为了解决这些问题,已建议将细胞膜包被的纳米颗粒作为实际替代方法。生产过程涉及三个主要阶段:细胞裂解和膜破碎,膜分离和纳米颗粒涂层。细胞膜通常使用均匀化或超声处理的低渗裂解来碎片。随后的膜片段通过多个离心步骤隔离。可以通过挤出,超声处理或两种方法组合来实现涂层纳米颗粒。值得注意的是,该分析揭示了缺乏普遍适用的纳米颗粒涂层方法,因为这三个阶段的程序在其程序上有显着差异。本综述探讨了当前的开发和细胞膜包裹的纳米颗粒的方法,强调了它们作为靶向药物递送和各种治疗应用的有效替代方案的潜力。
将氧等离子体处理的石英晶片切割成1cm2用于PPMS(霍尔、磁阻、温变电导)和XPS测量中的所有电学测量。由于尺寸要求,将氧等离子体处理的ITO基板切割成0.5 cm * 0.5 cm用于PES和IPES测量,将氧等离子体处理的石英晶片切割成0.6 cm * 0.4 cm用于高场霍尔测量。所有基板在使用前分别在丙酮和异丙醇中通过超声波清洗工艺清洗10分钟。将C 14 -PBTTT溶液以3000 r/min的转速旋涂到相应的基板上,形成厚度约25nm的PBTTT薄膜,然后将获得的薄膜在150°C下退火10分钟,让其冷却至室温。将Cytop溶液旋涂到所有掺杂后的电学测量薄膜上进行封装,再通过光刻和氧离子刻蚀实现霍尔棒结构的图形化。掺杂工艺
摘要 测定Cas9对靶位点的切割效率对于基因组编辑非常重要。然而,这种测定只能通过体外方法进行,因为需要纯化Cas蛋白和合成gRNA。在这里,我们开发了一种体内方法,称为植物瞬时CRISPR/Cas编辑(TCEP)来测定Cas9的切割效率。按常规方法构建农杆菌介导的植物转化CRISPR/Cas载体。利用我们建立的瞬时转化方法,Cas9蛋白和gRNA瞬时表达并形成复合物以切割其靶位,从而导致动态DNA断裂。使用qPCR定量断裂的DNA以测量Cas9的切割效率。我们利用TCEP和体外方法研究了白桦和山杨×波利纳植物中Cas9对不同靶位点的切割效率。 TCEP法测定结果与体外法一致,说明TCEP法测定切割效率可靠。另外,利用TCEP法,我们发现热处理和超声处理均能显著提高CRISPR/Cas效率。因此,TCEP法具有广泛的应用价值,不仅可用于分析CRISPR/Cas效率,还可用于确定Cas9切割中涉及的因素。
经颅聚焦超声刺激 (tFUS) 是一种非侵入性神经调节技术,与目前可用的非侵入性脑刺激方法(例如经颅磁刺激 (TMS) 和经颅直流电刺激 (tDCS))相比,它可以更深地穿透并以更高的空间分辨率(毫米级)调节神经活动。虽然有几项研究表明 tFUS 能够调节神经元活动,但尚不清楚它是否可以根据需要产生长期可塑性以修改电路功能,特别是在可塑性有限的成人脑回路中,例如丘脑皮质突触。在这里,我们证明经颅低强度聚焦超声 (LIFU) 刺激深层脑结构视觉丘脑(背外侧膝状体核,dLGN)会导致 NMDA 受体 (NMDAR) 依赖的突触传递长期抑制,该突触传递到成年雌雄小鼠的初级视觉皮层 (V1) 中的第 4 层神经元。这种变化并不伴随神经元活动的大幅增加,如使用 cFos 靶向重组活性群体 (cFosTRAP2) 小鼠系所观察到的,也不伴随小胶质细胞的激活,后者通过 IBA-1 染色进行评估。使用基于神经元膜内空化激发 (NICE) 超声神经调节理论的模型 (SONIC),我们发现超声处理后 dLGN 神经元的预测活动模式是状态依赖性的,其活动范围属于有利于诱导长期突触抑制的参数空间。我们的结果表明,非侵入性经颅 LIFU 刺激有可能恢复临界期后成人大脑丘脑皮质突触的长期可塑性。
摘要简介:最近的研究表明,雷帕霉素作为哺乳动物雷帕霉素靶点 (mTOR) 抑制剂,可能对中枢神经系统 (CNS) 相关疾病产生有益的治疗作用。然而,雷帕霉素的免疫抑制作用作为不良反应、低水溶性、体内快速降解以及血脑屏障相关的挑战限制了该药物在脑部疾病的临床应用。为了克服这些缺点,设计和开发了一种含有雷帕霉素的转铁蛋白 (Tf) 修饰的纳米结构脂质载体 (NLC)。方法:使用溶剂扩散和超声处理法制备载雷帕霉素的阳离子和裸 NLC,并进行充分表征。最佳阳离子 NLC 用 Tf 进行物理修饰。对于体外研究,评估了 U-87 MG 胶质母细胞瘤细胞的 MTT 测定和纳米粒子的细胞内摄取。通过荧光光学成像评估纳米粒子的动物生物分布。最后,还研究了 NLC 对免疫系统的体内影响。结果:球形 NLC 粒径小,范围从 120 到 150 nm,包封率高,超过 90%,细胞存活率≥80%。更重要的是,与裸露的 NLC 相比,Tf 修饰的 NLC 在孵育 2 小时后显示出明显更高的细胞摄取率(97% vs 60%),并且进一步在小鼠脑内有适当的蓄积,在非靶向组织中的摄取率较低。令人惊讶的是,载有雷帕霉素的 NLC 没有表现出免疫抑制作用。结论:我们的研究结果表明,设计的 Tf 修饰的 NLC 可以被视为一种安全有效的雷帕霉素靶向脑递送载体,这可能在临床治疗神经系统疾病方面具有重要价值。